Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2009_43_4_a2, author = {A. A. Ilyin}, title = {On the {Spectrum} of the {Stokes} {Operator}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {14--25}, publisher = {mathdoc}, volume = {43}, number = {4}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a2/} }
A. A. Ilyin. On the Spectrum of the Stokes Operator. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 4, pp. 14-25. http://geodesic.mathdoc.fr/item/FAA_2009_43_4_a2/
[1] K. I. Babenko, “Ob asimptotike sobstvennykh znachenii linearizovannykh uravnenii Nave–Stoksa”, DAN SSSR, 263:3 (1982), 521–525 | MR | Zbl
[2] A. V. Babin, M. I. Vishik, Attraktory evolyutsionnykh uravnenii, Nauka, M., 1989 | MR | Zbl
[3] V. V. Chepyzhov, A. A. Ilyin, “On the fractal dimension of invariant sets; applications to Navier–Stokes equations”, Discrete Contin. Dyn. Syst., 10:1–2 (2004), 117–135 | MR | Zbl
[4] P. Constantin, C. Foias, “Global Lyapunov exponents, Kaplan–Yorke formulas and the dimension of the attractors for the 2D Navier–Stokes equations”, Comm. Pure Appl. Math., 38:1 (1985), 1–27 | DOI | MR | Zbl
[5] P. Constantin, C. Foias, Navier–Stokes Equations, The University of Chicago Press, Chicago, 1988 | MR
[6] J. Dolbeault, A. Laptev, M. Loss, “Lieb–Thirring inequalities with improved constants”, J. European Math. Soc., 10:4 (2008), 1121–1126 | DOI | MR | Zbl
[7] C. Foias, O. Manley, R. Rosa, R. Temam, Navier–Stokes Equations and Turbulence, Cambridge Univ. Press, Cambridge, 2001 | MR | Zbl
[8] D. Hundertmark, A. Laptev, T. Weidl, “New bounds on the Lieb–Thirring constants”, Invent. Math., 140:3 (2000), 693–704 | DOI | MR | Zbl
[9] J.-M. Ghidaglia, M. Marion, R. Temam, “Generalization of the Sobolev–Lieb–Thirring inequalities and applications to the dimension of attractors”, Differential Integral Equations, 1:1 (1988), 1–21 | DOI | MR | Zbl
[10] A. A. Ilyin, “Attractors for Navier–Stokes equations in domains with finite measure”, Nonlinear Anal., 27:5 (1996), 605–616 | DOI | MR | Zbl
[11] A. A. Ilin, “Integralnye neravenstva Liba–Tirringa i ikh prilozheniya k attraktoram uravnenii Nave–Stoksa”, Matem. sb., 196:1 (2005), 33–66 | DOI | MR | Zbl
[12] O. A. Ladyzhenskaya, “First boundary value problem for Navier–Stokes equations in domain with nonsmooth boundaries”, C. R. Acad. Sci. Paris, Ser. 1, 314:4 (1992), 253–258 | MR | Zbl
[13] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Nauka, M., 1970 | MR
[14] A. Laptev, “Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces”, J. Funct. Anal., 151:2 (1997), 531–545 | DOI | MR | Zbl
[15] A. Laptev, T. Weidl, “Recent results on Lieb–Thirring inequalities”, Journées “Équations aux Dérivées Partielles” (La Chapelle sur Erdre, 2000), pages Exp. No. XX, Univ. Nantes, Nantes, 2000 | MR | Zbl
[16] P. Li, S.-T. Yau, “On the Schrödinger equation and the eigenvalue problem”, Comm. Math. Phys., 88:3 (1983), 309–318 | DOI | MR | Zbl
[17] E. Lieb, “On characteristic exponents in turbulence”, Comm. Math. Phys., 92:4 (1984), 473–480 | DOI | MR | Zbl
[18] E. Lieb, W. Thirring, “Inequalities for the moments of the eigenvalues of the Schrödinger hamiltonian and their relation to Sobolev inequalities”, Studies in Math. Physics, Essays in honor of Valentine Bargmann, Princeton University Press, 1976, 269–303
[19] G. Metivier, “Valeurs propres des opérateurs definis sur la restriction de systems variationnels à des sous-espases.”, J. Math. Pures Appl., 57:2 (1978), 133–156 | MR | Zbl
[20] G. Pólya, “On the eigenvalues of vibrating membranes”, Proc. London Math. Soc., 11 (1961), 419–433 | DOI | MR | Zbl
[21] R. Rosa, “The global attractor for the 2D Navier–Stokes flow on some unbounded domains”, Nonlinear Anal., 32:1 (1998), 71–85 | DOI | MR | Zbl
[22] R. Temam, Uravneniya Nave–Stoksa. Teoriya i chislennyi analiz, Mir, M., 1981 | MR | Zbl
[23] R. Temam, “Attractors for Navier–Stokes equations”, Res. Notes Math., 122, 1985, 272–292 | MR | Zbl
[24] R. Temam, Infinite Dimensional Dynamical Systems in Mechanics and Physics, Springer-Verlag, New York, 1997 | MR