Weak type (1,1) in a Refinement of the Marcinkiewicz Theorem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 3, pp. 89-92
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $m$ be a bounded function on $\mathbb{R}_+$ whose $p$-variations on the intervals $[2^k,2^{k+1}]$, $k\in\mathbb{Z}$, are uniformly bounded for some $p2$. Then the operator $T$, $\widehat{Tf}=m\hat f$, is of weak type $(1,1)$ on the space $H^1(\mathbb{R})$.
Mots-clés :
Fourier multiplier.
@article{FAA_2009_43_3_a6,
author = {S. V. Kislyakov},
title = {Weak type (1,1) in a {Refinement} of the {Marcinkiewicz} {Theorem}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {89--92},
publisher = {mathdoc},
volume = {43},
number = {3},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a6/}
}
S. V. Kislyakov. Weak type (1,1) in a Refinement of the Marcinkiewicz Theorem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 3, pp. 89-92. http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a6/