The Inhomogeneous Dirichlet Problem for the Stokes System in Lipschitz Domains with Unit Normal Close to~VMO
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 3, pp. 65-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

The goal of this work is to study the inhomogeneous Dirichlet problem for the Stokes system in a Lipschitz domain $\Omega\subseteq\mathbb{R}^n$, $n\ge 2$. Our main result is that this problem is well posed in Besov–Triebel–Lizorkin spaces, provided that the unit normal $\nu$ to $\Omega$ has small mean oscillation.
Keywords: Stokes system, Lipschitz domain, boundary value problem, Besov–Triebel–Lizorkin spaces.
@article{FAA_2009_43_3_a5,
     author = {V. G. Maz'ya and M. Mitrea and T. O. Shaposhnikova},
     title = {The {Inhomogeneous} {Dirichlet} {Problem} for the {Stokes} {System} in {Lipschitz} {Domains} with {Unit} {Normal} {Close} {to~VMO}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {65--88},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a5/}
}
TY  - JOUR
AU  - V. G. Maz'ya
AU  - M. Mitrea
AU  - T. O. Shaposhnikova
TI  - The Inhomogeneous Dirichlet Problem for the Stokes System in Lipschitz Domains with Unit Normal Close to~VMO
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 65
EP  - 88
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a5/
LA  - ru
ID  - FAA_2009_43_3_a5
ER  - 
%0 Journal Article
%A V. G. Maz'ya
%A M. Mitrea
%A T. O. Shaposhnikova
%T The Inhomogeneous Dirichlet Problem for the Stokes System in Lipschitz Domains with Unit Normal Close to~VMO
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 65-88
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a5/
%G ru
%F FAA_2009_43_3_a5
V. G. Maz'ya; M. Mitrea; T. O. Shaposhnikova. The Inhomogeneous Dirichlet Problem for the Stokes System in Lipschitz Domains with Unit Normal Close to~VMO. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 3, pp. 65-88. http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a5/

[1] V. Adolfsson, J. Pipher, “The inhomogeneous Dirichlet problem for $\Delta^2$ in Lipschitz domains”, J. Funct. Anal., 159:1 (1998), 137–190 | DOI | MR | Zbl

[2] M. S. Agranovich, “Spektralnye zadachi dlya silno ellipticheskikh sistem vtorogo poryadka v oblastyakh s gladkoi i negladkoi granitsei”, UMN, 57:5 (2002), 3–78 | DOI | MR

[3] M. S. Agranovich, “K teorii zadach Dirikhle i Neimana dlya lineinykh silno ellipticheskikh sistem v lipshitsevykh oblastyakh”, Funkts. analiz i ego pril., 41:4 (2007), 1–21 | DOI | MR | Zbl

[4] M. S. Agranovich, “Spektralnye zadachi v lipshitsevykh oblastyakh dlya silno ellipticheskikh sistem v banakhovykh prostranstvakh $H_p^\sigma$ i $B_p^\sigma$”, Funkts. analiz i ego pril., 42:4 (2008), 2–23 | DOI | MR | Zbl

[5] M. S. Agranovich, “Operatory tipa potentsiala i zadachi sopryazheniya dlya silno ellipticheskikh sistem 2-go poryadka”, Funkts. analiz i ego pril., 43:3 (2009), 3–25 | DOI | MR

[6] C. Amrouche, V. Girault, “On the existence and regularity of the solution of Stokes problem in arbitrary dimension”, Proc. Japan Acad. Ser. A Math. Sci., 67:5 (1991), 171–175 | DOI | MR | Zbl

[7] C. Amrouche, V. Girault, “Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension”, Czechoslovak Math. J., 44(119):1 (1994), 109–140 | DOI | MR | Zbl

[8] I. Berg, I. Lëfstrem, Interpolyatsionnye prostranstva. Vvedenie, Mir, M., 1980 | MR

[9] R. M. Brown, Z. Shen, “Estimates for the Stokes operator in Lipschitz domains”, Indiana Univ. Math. J., 44:4 (1995), 1183–1206 | DOI | MR | Zbl

[10] L. Cattabriga, “Su un problema al contorno relativo al sistema di equazioni di Stokes”, Rend. Sem. Mat. Univ. Padova, 31 (1961), 308–340 | MR | Zbl

[11] D.-C. Chang, G. Dafni, E. M. Stein, “Hardy spaces, BMO, and boundary value problems for the Laplacian on a smooth domain in $\mathbb{R}^n$”, Trans. Amer. Math. Soc., 351:4 (1999), 1605–1661 | DOI | MR | Zbl

[12] D.-C. Chang, S. G. Krantz, E. M. Stein, “$H^p$ theory on a smooth domain in $\mathbb{R}^N$ and elliptic boundary value problems”, J. Funct. Anal., 114:2 (1993), 286–347 | DOI | MR | Zbl

[13] D.-C. Chang, S. G. Krantz, E. M. Stein, “Hardy spaces and elliptic boundary value problems”, The Madison Symposium on Complex Analysis (Madison, WI, 1991), Contemp. Math., 137, Amer. Math. Soc., Providence, RI, 1992, 119–131 | DOI | MR

[14] R. R. Coifman, A. McIntosh, Y. Meyer, “L'intégrale de Cauchy définit un opérateur borné sur $L^2$ pour les courbes lipschitziennes”, Ann. of Math., 116:2 (1982), 361–388 | DOI | MR

[15] R. R. Coifman, G. Weiss, “Extensions of Hardy spaces and their use in analysis”, Bull. Amer. Math. Soc., 83:4 (1977), 569–645 | DOI | MR | Zbl

[16] M. Cwikel, “Real and complex interpolation and extrapolation of compact operators”, Duke Math. J., 65:2 (1992), 333–343 | DOI | MR | Zbl

[17] M. Dauge, “Stationary Stokes and Navier–Stokes systems on two- or three-dimensional domains with corners. I. Linearized equations”, SIAM J. Math. Anal., 20:1 (1989), 74–97 | DOI | MR | Zbl

[18] R. Dautray, J.-L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, Evolution Problems II, 6, Springer-Verlag, Berlin, 1993 | MR

[19] M. Dindoš, M. Mitrea, “The stationary Navier–Stokes system in nonsmooth manifolds: the Poisson problem in Lipschitz and $C^1$ domains”, Arch. Ration. Mech. Anal., 174:1 (2004), 1–47 | DOI | MR | Zbl

[20] E. B. Fabes, C. E. Kenig, G. C. Verchota, “The Dirichlet problem for the Stokes system on Lipschitz domains”, Duke Math. J., 57:3 (1988), 769–793 | DOI | MR | Zbl

[21] G. P. Galdi, C. G. Simader, H. Sohr, “On the Stokes problem in Lipschitz domains”, Ann. Mat. Pura Appl. (4), 167 (1994), 147–163 | DOI | MR | Zbl

[22] V. Girault, P.-A. Raviart, Finite Element Approximation of the Navier–Stokes Equations, Lecture Notes in Math., 749, Springer-Verlag, Berlin–New York, 1979 | DOI | MR | Zbl

[23] Y. Giga, “Analyticity of the semigroup generated by the Stokes operator in $L^r$ spaces”, Math. Z., 178:3 (1981), 297–329 | DOI | MR | Zbl

[24] L. Khërmander, Lineinye differentsialnye operatory s chastnymi proizvodnymi, Mir, M., 1965 | MR

[25] S. Hofmann, M. Mitrea, M. Taylor, Singular integrals and elliptic boundary problems on regular Semmes–Kenig–Toro domains, Preprint, 2008 | MR

[26] D. S. Jerison, C. E. Kenig, “Boundary behavior of harmonic functions in nontangentially accessible domains”, Adv. in Math., 46:1 (1982), 80–147 | DOI | MR | Zbl

[27] D. Jerison, C. Kenig, “The inhomogeneous problem in Lipschitz domains”, J. Funct. Anal., 130 (1995), 161–219 | DOI | MR | Zbl

[28] A. Jonsson, H. Wallin, Function spaces on subsets of $\mathbb{R}^n$, Math. Rep., 2, no. 1, 1984 | MR | Zbl

[29] N. Kalton, S. Mayboroda, M. Mitrea, “Interpolation of Hardy–Sobolev–Besov–Triebel–Lizorkin spaces and applications to problems in partial differential equations”, Interpolation Theory and Applications, Contemp. Math., 445, Amer. Math. Soc., Providence, RI, 2007, 121–177 | DOI | MR | Zbl

[30] R. B. Kellogg, J. E. Osborn, “A regularity result for the Stokes problem in a convex polygon”, J. Funct. Anal., 21:4 (1976), 397–431 | DOI | MR | Zbl

[31] C. E. Kenig, T. Toro, “Free boundary regularity for harmonic measures and Poisson kernels”, Ann. of Math., 150:2 (1999), 369–454 | DOI | MR | Zbl

[32] J. Kilty, The $L^p$ Dirichlet problem for the Stokes system in Lipschitz domains, Preprint, 2008 | MR

[33] V. Kozlov, V. Mazżya, “Boundary behavior of solutions to linear and nonlinear elliptic equations in plane convex domains”, Math. Res. Lett., 8:1–2 (2001), 189–193 | DOI | MR | Zbl

[34] V. A. Kozlov, V. G. Mazya, “Spektralnye svoistva operatornykh puchkov, porozhdennykh ellipticheskimi kraevymi zadachami v konuse”, Funkts. analiz i ego pril., 22:2 (1988), 38–46 | MR | Zbl

[35] V. A. Kozlov, V. G. Mazya, “O spektre operatornogo puchka, porozhdennogo zadachei Dirikhle v konuse”, Matem. sb., 182:5 (1991), 638–660 | MR

[36] V. A. Kozlov, V. G. Mazżya, J. Rossmann, Spectral Problems Associated with Corner Singularities of Solutions to Elliptic Equations, Amer. Math. Soc., Providence, RI, 2001 | MR | Zbl

[37] V. A. Kozlov, V. Mazżya, C. Schwab, “On singularities of solutions to the Dirichlet problem of hydrodynamics near the vertex of a cone”, J. Reine Angew. Math., 456 (1994), 65–97 | MR | Zbl

[38] O. A. Ladyzhenskaya, Matematicheskie voprosy dinamiki vyazkoi neszhimaemoi zhidkosti, Fizmatlit, M., 1961 | MR

[39] P. Maremonti, R. Russo, G. Starita, “On the Stokes equations: the boundary value problem”, Advances in Fluid Dynamics, Quad. Mat., 4, Dept. Math., Seconda Univ. Napoli, Caserta, 1999, 69–140 | MR

[40] S. Mayboroda, M. Mitrea, “Sharp estimates for Green potentials on non-smooth domains”, Math. Res. Lett., 11 (2004), 481–492 | DOI | MR | Zbl

[41] S. Mayboroda, M. Mitrea, “The solution of the Chang–Krein–Stein conjecture”, Proceedings of the Conference in Harmonic Analysis and its Applications, ed. A. Miyachi, Tokyo Woman's Cristian University, Tokyo, Japan, March 24–26, 2007, 61–154

[42] V. Mazżya, M. Mitrea, T. Shaposhnikova, “The Dirichlet problem in Lipschitz domains with boundary data in Besov spaces for higher order elliptic systems with rough coefficients”, J. d'Analyse Math. (to appear) | MR

[43] V. Mazżya, J. Rossmann, “Mixed boundary value problems for the Navier–Stokes system in polyhedral domains”, Arch. Rational Mech. Anal., 2009 (to appear) | MR

[44] I. Mitrea, M. Mitrea, Multiple layer potentials for higher order elliptic boundary value problems, Preprint, 2008 | MR

[45] M. Mitrea, M. Taylor, “Boundary layer methods for Lipschitz domains in Riemannian manifolds”, J. Funct. Anal., 163:2 (1999), 181–251 | DOI | MR | Zbl

[46] M. Mitrea, M. Taylor, “Potential theory on Lipschitz domains in Riemannian manifolds: Sobolev–Besov space results and the Poisson problem”, J. Funct. Anal., 176 (2000), 1–79 | DOI | MR | Zbl

[47] M. Mitrea, M. Taylor, “Navier–Stokes equations on Lipschitz domains in Riemannian manifolds”, Math. Ann., 321:4 (2001), 955–987 | DOI | MR | Zbl

[48] M. Mitrea, M. Wright, Boundary Value Problems for the Stokes System in Arbitrary Lipschitz Domains, Preprint, 2008 | MR

[49] V. Rychkov, “On restrictions and extensions of the Besov and Triebel–Lizorkin spaces with respect to Lipschitz domains”, J. London Math. Soc., (2), 60:1 (1999), 237–257 | DOI | MR | Zbl

[50] G. Savaré, “Regularity results for elliptic equations in Lipschitz domains”, J. Funct. Anal., 152:1 (1998), 176–201 | DOI | MR | Zbl

[51] S. Semmes, “Hypersurfaces in $\mathbb{R}^n$ whose unit normal has small BMO norm”, Proc. Amer. Math. Soc., 112:2 (1991), 403–412 | DOI | MR | Zbl

[52] S. Semmes, “Chord-arc surfaces with small constant. I”, Adv. Math., 85:2 (1991), 198–223 | DOI | MR | Zbl

[53] Z. Shen, “A note on the Dirichlet problem for the Stokes system in Lipschitz domains”, Proc. Amer. Math. Soc., 123:3 (1995), 801–811 | DOI | MR | Zbl

[54] I. Ya. Shneiberg, “Spektralnye svoistva lineinykh operatorov v interpolyatsionnykh semeistvakh banakhovykh prostranstv”, Matem. issled., 9:2 (1974), 214–227 | MR

[55] V. A. Solonnikov, “Ob obschikh kraevykh zadachakh dlya sistem, ellipticheskikh v smysle A. Daglisa–L. Nirenberga. II”, Trudy MIAN, 92, 1966, 233–297 | MR | Zbl

[56] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, 30, Princeton University Press, Princeton, N.J., 1970 | MR

[57] Kh. Tribel, Teoriya interpolyatsii, funktsionalnye prostranstva, differentsialnye operatory, Mir, M., 1980 | MR

[58] R. Temam, Navier–Stokes Equations. Theory and Numerical Analysis, Studies in Mathematics and its Applications, 2, North-Holland Publishing Co., Amsterdam–New York–Oxford, 1977 | MR | Zbl

[59] W. Varnhorn, The Stokes Equations, Mathematical Research, 76, Akademie-Verlag, Berlin, 1994 | MR | Zbl

[60] G. Verchota, “Layer potentials and regularity for the Dirichlet problem for Laplace's equation in Lipschitz domains”, J. Funct. Anal., 59:3 (1984), 572–611 | DOI | MR | Zbl