Perturbation of the Spectrum of a Differential Operator under a Bounded Perturbation of the Potential
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 3, pp. 54-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a perturbation of a differential operator by a bounded measurable function. We prove that if a certain mean of this function has a limit, then the sequence of Cesaro means of the perturbation of the spectrum has the same limit.
Keywords: spectrum, averaging, Green function.
Mots-clés : perturbation
@article{FAA_2009_43_3_a4,
     author = {R. S. Ismagilov and A. G. Kostyuchenko},
     title = {Perturbation of the {Spectrum} of a {Differential} {Operator} under a {Bounded} {Perturbation} of the {Potential}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {54--64},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a4/}
}
TY  - JOUR
AU  - R. S. Ismagilov
AU  - A. G. Kostyuchenko
TI  - Perturbation of the Spectrum of a Differential Operator under a Bounded Perturbation of the Potential
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 54
EP  - 64
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a4/
LA  - ru
ID  - FAA_2009_43_3_a4
ER  - 
%0 Journal Article
%A R. S. Ismagilov
%A A. G. Kostyuchenko
%T Perturbation of the Spectrum of a Differential Operator under a Bounded Perturbation of the Potential
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 54-64
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a4/
%G ru
%F FAA_2009_43_3_a4
R. S. Ismagilov; A. G. Kostyuchenko. Perturbation of the Spectrum of a Differential Operator under a Bounded Perturbation of the Potential. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 3, pp. 54-64. http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a4/

[1] A. G. Kostyuchenko, “Asimptoticheskoe povedenie spektralnoi funktsii samosopryazhennykh ellipticheskikh operatorov”, Chetvertaya matematicheskaya shkola, Kiev, 1968, 42–117 | Zbl

[2] V. A. Sadovnichii, V. E. Podolskii, “Sledy operatorov”, UMN, 61:5(371) (2006), 89–156 | DOI | MR | Zbl

[3] V. E. Podolskii, “O sledakh vozmuschennoi operatornoi polugruppy”, Matem. zametki, 75:3 (2004), 462–466 | DOI | MR | Zbl

[4] S. V. Eidelman, Parabolicheskie sistemy, Nauka, M., 1964 | MR

[5] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu nesamosopryazhennykh operatorov, Nauka, M., 1965

[6] D. Borwein, “Tauberian theory, a century of developments, by Jacob Korevaar”, Bull. Amer. Math. Soc., 42:3, 401–406 | DOI | MR