Perturbation of the Spectrum of a Differential Operator under a Bounded Perturbation of the Potential
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 3, pp. 54-64
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider a perturbation of a differential operator by a bounded measurable function. We prove that if a certain mean of this function has a limit, then the sequence of Cesaro means of the perturbation of the spectrum has the same limit.
Keywords:
spectrum, averaging, Green function.
Mots-clés : perturbation
Mots-clés : perturbation
@article{FAA_2009_43_3_a4,
author = {R. S. Ismagilov and A. G. Kostyuchenko},
title = {Perturbation of the {Spectrum} of a {Differential} {Operator} under a {Bounded} {Perturbation} of the {Potential}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {54--64},
year = {2009},
volume = {43},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a4/}
}
TY - JOUR AU - R. S. Ismagilov AU - A. G. Kostyuchenko TI - Perturbation of the Spectrum of a Differential Operator under a Bounded Perturbation of the Potential JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2009 SP - 54 EP - 64 VL - 43 IS - 3 UR - http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a4/ LA - ru ID - FAA_2009_43_3_a4 ER -
%0 Journal Article %A R. S. Ismagilov %A A. G. Kostyuchenko %T Perturbation of the Spectrum of a Differential Operator under a Bounded Perturbation of the Potential %J Funkcionalʹnyj analiz i ego priloženiâ %D 2009 %P 54-64 %V 43 %N 3 %U http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a4/ %G ru %F FAA_2009_43_3_a4
R. S. Ismagilov; A. G. Kostyuchenko. Perturbation of the Spectrum of a Differential Operator under a Bounded Perturbation of the Potential. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 3, pp. 54-64. http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a4/
[1] A. G. Kostyuchenko, “Asimptoticheskoe povedenie spektralnoi funktsii samosopryazhennykh ellipticheskikh operatorov”, Chetvertaya matematicheskaya shkola, Kiev, 1968, 42–117 | Zbl
[2] V. A. Sadovnichii, V. E. Podolskii, “Sledy operatorov”, UMN, 61:5(371) (2006), 89–156 | DOI | MR | Zbl
[3] V. E. Podolskii, “O sledakh vozmuschennoi operatornoi polugruppy”, Matem. zametki, 75:3 (2004), 462–466 | DOI | MR | Zbl
[4] S. V. Eidelman, Parabolicheskie sistemy, Nauka, M., 1964 | MR
[5] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu nesamosopryazhennykh operatorov, Nauka, M., 1965
[6] D. Borwein, “Tauberian theory, a century of developments, by Jacob Korevaar”, Bull. Amer. Math. Soc., 42:3, 401–406 | DOI | MR