New Approach to the Solvability of Generalized Navier--Stokes Equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 3, pp. 33-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

We propose a new approach to prove the existence of weak solutions to generalized (or modified) Navier–Stokes equations. We also consider systems presently well known from the theory of non-Newtonian electrorheological fluids.
Keywords: Navier–Stokes equation, convective term, energy identity, compensated compactness lemma.
@article{FAA_2009_43_3_a3,
     author = {V. V. Zhikov},
     title = {New {Approach} to the {Solvability} of {Generalized} {Navier--Stokes} {Equations}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {33--53},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a3/}
}
TY  - JOUR
AU  - V. V. Zhikov
TI  - New Approach to the Solvability of Generalized Navier--Stokes Equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 33
EP  - 53
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a3/
LA  - ru
ID  - FAA_2009_43_3_a3
ER  - 
%0 Journal Article
%A V. V. Zhikov
%T New Approach to the Solvability of Generalized Navier--Stokes Equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 33-53
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a3/
%G ru
%F FAA_2009_43_3_a3
V. V. Zhikov. New Approach to the Solvability of Generalized Navier--Stokes Equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 3, pp. 33-53. http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a3/

[1] O. A. Ladyzhenskaya, “O novykh uravneniyakh dlya opisaniya dvizhenii vyazkikh neszhimaemykh zhidkostei i razreshimosti v tselom dlya nikh kraevykh zadach”, Trudy MIAN, 102, 1967, 85–104 | Zbl

[2] Zh.-L. Lions, Nekotorye metody resheniya nelineinykh kraevykh zadach, Mir, M., 1972 | MR | Zbl

[3] E. Hopf, “Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen”, Math. Nach., 4 (1950–1951), 213–231 | DOI | MR

[4] J. Leray, “Sur le mouvement d'un liquide visquex emplissant l'espace”, Acta Math., 63:1 (1934), 193–248 | DOI | MR | Zbl

[5] J. Málek, J. Nečas, M. Rokyta, M. Růžička, Weak and Measure-Valued Solutions to Evolutionary PDEs, Applied Mathematics and Mathematical Computation, 13, Chapman and Half, London, 1996 | MR | Zbl

[6] J. Málek, J. Nečas, M. Růžička, “On weak solution to a class of non-Newtonian incompressible fluids in bounded three-dimensional domains. The case $p\ge 2$”, Adv. Differential Equations, 6:3 (2001), 257–302 | DOI | MR | Zbl

[7] M. Růžička, Electrorheological Fluids: Modeling and Mathematical Theory, Lecture Notes in Math., 1748, Springer-Verlag, Berlin–New York, 2000 | MR

[8] O. A. Ladyzhenskaya, V. A. Solonnikov, N. N. Uraltseva, Lineinye i kvazilineinye uravneniya parabolicheskogo tipa, Nauka, M., 1967 | MR

[9] P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977 | MR

[10] I. Ekland, R. Temam, Vypuklyi analiz i variatsionnye zadachi, Mir, M., 1979 | MR

[11] V. V. Zhikov, “Razreshimost trekhmernoi zadachi o termistore”, Trudy MIRAN, 261, 2008, 101–114 | MR

[12] B. M. Levitan, V. V. Zhikov, Pochti-periodicheskie funktsii i differentsialnye uravneniya, izd-vo MGU, M., 1978 | MR | Zbl

[13] R. Temam, Uravneniya Nave–Stoksa, Mir, M., 1981 | MR | Zbl

[14] V. V. Zhikov, “K tekhnike predelnogo perekhoda v nelineinykh ellipticheskikh uravneniyakh”, Dokl. RAN, 420:3 (2008), 300–305 | MR | Zbl

[15] V. V. Zhikov, “K tekhnike predelnogo perekhoda v nelineinykh ellipticheskikh uravneniyakh”, Funkts. analiz i ego pril., 43:2 (2009), 19–38 | DOI | MR

[16] M. E. Bogovskii, “Reshenie pervoi kraevoi zadachi dlya uravneniya nerazryvnosti neszhimaemoi sredy”, Dokl. AN SSSR, 248 (1979), 1037–1040 | MR

[17] N. Danford, Dzh. T. Shvarts, Lineinye operatory. Obschaya teoriya, IL, M., 1962