Two-Sided Estimates for the Trace of the Difference of Two Semigroups
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 3, pp. 26-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the derivation of two-sided estimates for the trace of the difference of two semigroups generated by two Schrödinger operators in $L_{2}(\mathbb{R}^{3})$ with trace class difference of the resolvents. Use is made of a purely operator-theoretic technique. The results are stated in a rather general abstract form. The sharpness of our estimates is confirmed by the fact that they imply the asymptotic behavior of the trace of the difference of the semigroups as $t\to+0$. Our considerations are substantially based on the Krein–Lifshits formula and on the Birman–Solomyak representation for the spectral shift function.
Keywords: spectral shift function, Schrödinger operator
Mots-clés : trace formula.
@article{FAA_2009_43_3_a2,
     author = {M. Sh. Birman and V. A. Sloushch},
     title = {Two-Sided {Estimates} for the {Trace} of the {Difference} of {Two} {Semigroups}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {26--32},
     publisher = {mathdoc},
     volume = {43},
     number = {3},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a2/}
}
TY  - JOUR
AU  - M. Sh. Birman
AU  - V. A. Sloushch
TI  - Two-Sided Estimates for the Trace of the Difference of Two Semigroups
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 26
EP  - 32
VL  - 43
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a2/
LA  - ru
ID  - FAA_2009_43_3_a2
ER  - 
%0 Journal Article
%A M. Sh. Birman
%A V. A. Sloushch
%T Two-Sided Estimates for the Trace of the Difference of Two Semigroups
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 26-32
%V 43
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a2/
%G ru
%F FAA_2009_43_3_a2
M. Sh. Birman; V. A. Sloushch. Two-Sided Estimates for the Trace of the Difference of Two Semigroups. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 3, pp. 26-32. http://geodesic.mathdoc.fr/item/FAA_2009_43_3_a2/

[1] S. A. Stepin, Asimptotika integralnogo yadra i regulyarizovannyi sled diffuzionnoi polugruppy, (gotovitsya k pechati)

[2] Y. Colin de Verdière, “Une formule de traces pour l'opérateur de Schrödinger dans $\mathbb{R}^{3}$”, Ann. Sci. Ècole Norm. Sup. (4), 14:1 (1981), 27–39 | DOI | MR | Zbl

[3] M. Sh. Birman, M. Z. Solomyak, “Zamechaniya o funktsii spektralnogo sdviga”, Zap. nauchn. sem. LOMI, 27, 1972, 33–46 | MR | Zbl

[4] I. M. Lifshits, “Ob odnoi zadache teorii vozmuschenii, svyazannoi s kvantovoi statistikoi”, UMN, 7:1 (1952), 171–180 | MR | Zbl

[5] M. G. Krein, “O formule sledov v teorii vozmuschenii”, Matem. sb., 33:3 (1953), 597–626 | MR

[6] M. G. Krein, “Ob opredelitelyakh vozmuscheniya i formule sledov dlya unitarnykh i samosopryazhennykh operatorov”, Dokl. AN SSSR, 144:2 (1962), 268–271 | MR

[7] M. G. Krein, “O nekotorykh novykh issledovaniyakh po teorii vozmuschenii samosopryazhennykh operatorov”, Pervaya letnyaya matematicheskaya shkola, I, Kiev, 1964

[8] D. R. Yafaev, Matematicheskaya teoriya rasseyaniya, Izd-vo Sankt-Peterburgsk. un-ta, SPb, 1994 | MR

[9] V. S. Buslaev, “Kontinualnye integraly i asimptotika reshenii parabolicheskikh uravnenii pri $t\to0$. Prilozheniya k difraktsii”, Problemy matem. fiz., 2, LGU, 1967, 65–107

[10] V. S. Buslaev, “Formuly sledov i nekotorye asimptoticheskie otsenki yadra rezolventy dlya operatora Shrëdingera v trekhmernom prostranstve”, Problemy matem. fiz., 1, LGU, 1966, 82–101 | MR

[11] Y. Kannai, “Offdiagonal short time asymptotics for fundamental solutions of diffusion equations”, Commun. Partial Differ. Equations, 2:8 (1977), 781–830 | DOI | MR