Essential Spectrum of Difference Operators on Periodic Metric Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 83-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the study of Fredholm property and essential spectrum of general difference (or band) operators acting on the spaces $l^{p}(X)$ on a discrete metric space $X$ periodic with respect to the action of a finitely generated discrete group. The Schrödinger operator on a combinatorial periodic graph is a prominent example of a band operator of this kind.
Keywords: difference operator, discrete metric space, periodic graph, Fredholm property, essential spectrum.
@article{FAA_2009_43_2_a8,
     author = {V. S. Rabinovich and S. Roch},
     title = {Essential {Spectrum} of {Difference} {Operators} on {Periodic} {Metric} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {83--87},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a8/}
}
TY  - JOUR
AU  - V. S. Rabinovich
AU  - S. Roch
TI  - Essential Spectrum of Difference Operators on Periodic Metric Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 83
EP  - 87
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a8/
LA  - ru
ID  - FAA_2009_43_2_a8
ER  - 
%0 Journal Article
%A V. S. Rabinovich
%A S. Roch
%T Essential Spectrum of Difference Operators on Periodic Metric Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 83-87
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a8/
%G ru
%F FAA_2009_43_2_a8
V. S. Rabinovich; S. Roch. Essential Spectrum of Difference Operators on Periodic Metric Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 83-87. http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a8/

[1] P. Exner, Ann. Inst. H. Poincare Phys. Thèor., 66:4 (1997), 359–371 | MR | Zbl

[2] P. Harris, Carbon Nanotubes and Related Structure, Cambridge Univ. Press, Cambridge, 2001

[3] E. Korotyaev, I. Lobanov, Ann. Inst. H. Poincare, 8:6 (2007), 1151–1176 | DOI | MR | Zbl

[4] E. Korotyaev, Lett. Math. Phys., 83:1 (2008), 83–95 | DOI | MR | Zbl

[5] P. Kuchment, O. Post, Commun. Math. Phys., 275:3 (2007), 805–826 | DOI | MR | Zbl

[6] Y. Last, B. Simon, J. Anal. Math., 98 (2006), 183–220 | DOI | MR | Zbl

[7] V. Georgescu, A. Iftimovichi, Rev. Math. Phys., 18:4 (2006), 417–483 | DOI | MR | Zbl

[8] V. S. Rabinovich, S. Roch, B. Silbermann, Limit Operators and Their Applications in Operator Theory, Birkhäuser, Basel, 2004 | MR

[9] V. S. Rabinovich, S. Roch, J. Phys. A: Math. Gen., 39 (2006), 8377–8394 | DOI | MR | Zbl

[10] V. S. Rabinovich, S. Roch, J. Phys. A: Math. Theor., 40:33 (2007), 10109–10128 | DOI | MR | Zbl

[11] V. S. Rabinovich, Russian J. Math. Phys., 12:1 (2005), 62–80 | MR | Zbl

[12] J. Roe, Integral Equations Operator Theory, 51:3 (2005), 411–416 | DOI | MR | Zbl

[13] J. Roe, Lectures on Coarse Geometry, Univ. Lecture Ser., 31, Amer. Math. Soc., Providence, RI, 2003 | DOI | MR

[14] M. A. Shubin, Izv. AN SCSR, 49:3 (1985), 652–671 | MR | Zbl