Essential Spectrum of Difference Operators on Periodic Metric Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 83-87

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the study of Fredholm property and essential spectrum of general difference (or band) operators acting on the spaces $l^{p}(X)$ on a discrete metric space $X$ periodic with respect to the action of a finitely generated discrete group. The Schrödinger operator on a combinatorial periodic graph is a prominent example of a band operator of this kind.
Keywords: difference operator, discrete metric space, periodic graph, Fredholm property, essential spectrum.
@article{FAA_2009_43_2_a8,
     author = {V. S. Rabinovich and S. Roch},
     title = {Essential {Spectrum} of {Difference} {Operators} on {Periodic} {Metric} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {83--87},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a8/}
}
TY  - JOUR
AU  - V. S. Rabinovich
AU  - S. Roch
TI  - Essential Spectrum of Difference Operators on Periodic Metric Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 83
EP  - 87
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a8/
LA  - ru
ID  - FAA_2009_43_2_a8
ER  - 
%0 Journal Article
%A V. S. Rabinovich
%A S. Roch
%T Essential Spectrum of Difference Operators on Periodic Metric Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 83-87
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a8/
%G ru
%F FAA_2009_43_2_a8
V. S. Rabinovich; S. Roch. Essential Spectrum of Difference Operators on Periodic Metric Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 83-87. http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a8/