On a Class of Completely Continuous Operators in Hilbert Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 75-79
Cet article a éte moissonné depuis la source Math-Net.Ru
We introduce a class $G$ of completely continuous operators and prove theorems on the spectral structure of these operators. In particular, operators of this class are similar to model operators in de Branges spaces.
Keywords:
de Branges space, similarity of operators, unconditional basis.
@article{FAA_2009_43_2_a6,
author = {G. M. Gubreev and G. V. Lukashenko},
title = {On a {Class} of {Completely} {Continuous} {Operators} in {Hilbert} {Spaces}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {75--79},
year = {2009},
volume = {43},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a6/}
}
G. M. Gubreev; G. V. Lukashenko. On a Class of Completely Continuous Operators in Hilbert Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 75-79. http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a6/
[1] K. Gofman, Banakhovy prostranstva analiticheskikh funktsii, IL, M., 1963
[2] L. de Branges, Hilbert Spaces of Entire Functions, Prentice-Hall, 1968 | MR | Zbl
[3] Dzh. Garnett, Ogranichennye analiticheskie funktsii, Mir, M., 1984 | MR
[4] G. M. Gubreev, Algebra i analiz, 12:6 (2000), 1–97 | MR
[5] G. M. Gubreev, A. A. Tarasenko, Funkts. analiz i ego pril., 40:1 (2006), 71–75 | DOI | MR | Zbl
[6] M. M. Malamud, Trudy MMO, 60, 1999, 199–259 | MR