On a Class of Completely Continuous Operators in Hilbert Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 75-79

Voir la notice de l'article provenant de la source Math-Net.Ru

We introduce a class $G$ of completely continuous operators and prove theorems on the spectral structure of these operators. In particular, operators of this class are similar to model operators in de Branges spaces.
Keywords: de Branges space, similarity of operators, unconditional basis.
@article{FAA_2009_43_2_a6,
     author = {G. M. Gubreev and G. V. Lukashenko},
     title = {On a {Class} of {Completely} {Continuous} {Operators} in {Hilbert} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {75--79},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a6/}
}
TY  - JOUR
AU  - G. M. Gubreev
AU  - G. V. Lukashenko
TI  - On a Class of Completely Continuous Operators in Hilbert Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 75
EP  - 79
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a6/
LA  - ru
ID  - FAA_2009_43_2_a6
ER  - 
%0 Journal Article
%A G. M. Gubreev
%A G. V. Lukashenko
%T On a Class of Completely Continuous Operators in Hilbert Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 75-79
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a6/
%G ru
%F FAA_2009_43_2_a6
G. M. Gubreev; G. V. Lukashenko. On a Class of Completely Continuous Operators in Hilbert Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 75-79. http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a6/