On Lie Submodules and Tensor Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 91-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{X}$ be a bimodule over an algebra $B$, and let $\mathcal{D}_{\text{Lie}}(\mathcal{X},B)$ be the algebra of operators on $\mathcal{X}$ generated by all operators $x\mapsto ax-xa$, where $a\in B$. We show that in many (but not all) cases, $\mathcal{D}_{\text{Lie}}(\mathcal{X},B)$ consists of all elementary operators $x\mapsto\sum a_ixb_i$ whose coefficients satisfy the conditions $\sum_i a_ib_i=\sum_ib_ia_i=0$. Analogs of these results are proved for Banach bimodules over Banach algebras. Using them, we obtain the description of the structure of closed Lie ideals for a class of Banach algebras and prove some density theorems for Lie algebras of operators on Hilbert spaces.
Keywords: Banach algebra, derivation, Lie ideal, support of an operator.
@article{FAA_2009_43_2_a10,
     author = {V. S. Shulman and T. V. Shulman},
     title = {On {Lie} {Submodules} and {Tensor} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {91--96},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a10/}
}
TY  - JOUR
AU  - V. S. Shulman
AU  - T. V. Shulman
TI  - On Lie Submodules and Tensor Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 91
EP  - 96
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a10/
LA  - ru
ID  - FAA_2009_43_2_a10
ER  - 
%0 Journal Article
%A V. S. Shulman
%A T. V. Shulman
%T On Lie Submodules and Tensor Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 91-96
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a10/
%G ru
%F FAA_2009_43_2_a10
V. S. Shulman; T. V. Shulman. On Lie Submodules and Tensor Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 91-96. http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a10/

[1] W. Arveson, Ann. of Math., 100 (1974), 433–532 | DOI | MR | Zbl

[2] T. Andô, Acta Sci. Math. (Szeged), 24 (1963), 88–90 | MR | Zbl

[3] I. N. Herstein, Amer. J. Math., 77 (1955), 279–285 | DOI | MR | Zbl

[4] N. Jacobson, C. Rickart, Trans. Amer. Math. Soc., 69 (1950), 479–502 | DOI | MR | Zbl

[5] N. Varopoulos, Acta Math., 119 (1967), 51–112 | DOI | MR | Zbl