On Lie Submodules and Tensor Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 91-96
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mathcal{X}$ be a bimodule over an algebra $B$, and let $\mathcal{D}_{\text{Lie}}(\mathcal{X},B)$ be the algebra of operators on $\mathcal{X}$ generated by all operators $x\mapsto ax-xa$, where $a\in B$. We show that in many (but not all) cases, $\mathcal{D}_{\text{Lie}}(\mathcal{X},B)$ consists of all elementary operators $x\mapsto\sum a_ixb_i$ whose coefficients satisfy the conditions $\sum_i a_ib_i=\sum_ib_ia_i=0$. Analogs of these results are proved for Banach bimodules over Banach algebras. Using them, we obtain the description of the structure of closed Lie ideals for a class of Banach algebras and prove some density theorems for Lie algebras of operators on Hilbert spaces.
Keywords:
Banach algebra, derivation, Lie ideal, support of an operator.
@article{FAA_2009_43_2_a10,
author = {V. S. Shulman and T. V. Shulman},
title = {On {Lie} {Submodules} and {Tensor} {Algebras}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {91--96},
year = {2009},
volume = {43},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a10/}
}
V. S. Shulman; T. V. Shulman. On Lie Submodules and Tensor Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 2, pp. 91-96. http://geodesic.mathdoc.fr/item/FAA_2009_43_2_a10/
[1] W. Arveson, Ann. of Math., 100 (1974), 433–532 | DOI | MR | Zbl
[2] T. Andô, Acta Sci. Math. (Szeged), 24 (1963), 88–90 | MR | Zbl
[3] I. N. Herstein, Amer. J. Math., 77 (1955), 279–285 | DOI | MR | Zbl
[4] N. Jacobson, C. Rickart, Trans. Amer. Math. Soc., 69 (1950), 479–502 | DOI | MR | Zbl
[5] N. Varopoulos, Acta Math., 119 (1967), 51–112 | DOI | MR | Zbl