Pointwise van der Corput Lemma for Functions of Several Variables
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 91-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

A multidimensional version of the well-known van der Corput lemma is presented. A class of phase functions is described for which the corresponding oscillatory integrals satisfy a multidimensional decay estimate. The obtained estimates are uniform with respect to parameters on which the phases and amplitudes may depend.
Keywords: van der Corput lemma, oscillatory integral, asymptotic estimate.
@article{FAA_2009_43_1_a8,
     author = {M. V. Ruzhanskii},
     title = {Pointwise van der {Corput} {Lemma} for {Functions} of {Several} {Variables}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {91--93},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a8/}
}
TY  - JOUR
AU  - M. V. Ruzhanskii
TI  - Pointwise van der Corput Lemma for Functions of Several Variables
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 91
EP  - 93
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a8/
LA  - ru
ID  - FAA_2009_43_1_a8
ER  - 
%0 Journal Article
%A M. V. Ruzhanskii
%T Pointwise van der Corput Lemma for Functions of Several Variables
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 91-93
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a8/
%G ru
%F FAA_2009_43_1_a8
M. V. Ruzhanskii. Pointwise van der Corput Lemma for Functions of Several Variables. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 91-93. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a8/

[1] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii, 2, Nauka, 1984 | MR

[2] R. M. Beals, Mem. Amer. Math. Soc., 38, no. 264, 1982 | MR

[3] T. Matsuyama, M. Ruzhansky, Asymptotic integration and dispersion for hyperbolic equations, with applications to Kirchhoff equations, http://arxiv.org/abs/0709.1678v1 | MR

[4] B. Randol, Trans. Amer. Math. Soc., 139 (1969), 279–285 | DOI | MR | Zbl

[5] M. V. Ruzhanskii, UMN, 55:1 (2000), 99–170 | DOI | MR | Zbl

[6] M. Ruzhansky, J. Smith, Dispersive and Strichartz estimates for hyperbolic equations with constant coefficients, http://arxiv.org/abs/0711.2138 | MR

[7] M. Sugimoto, Math. Z., 215:4 (1994), 519–531 | DOI | MR | Zbl