Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2009_43_1_a8, author = {M. V. Ruzhanskii}, title = {Pointwise van der {Corput} {Lemma} for {Functions} of {Several} {Variables}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {91--93}, publisher = {mathdoc}, volume = {43}, number = {1}, year = {2009}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a8/} }
M. V. Ruzhanskii. Pointwise van der Corput Lemma for Functions of Several Variables. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 91-93. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a8/
[1] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii, 2, Nauka, 1984 | MR
[2] R. M. Beals, Mem. Amer. Math. Soc., 38, no. 264, 1982 | MR
[3] T. Matsuyama, M. Ruzhansky, Asymptotic integration and dispersion for hyperbolic equations, with applications to Kirchhoff equations, http://arxiv.org/abs/0709.1678v1 | MR
[4] B. Randol, Trans. Amer. Math. Soc., 139 (1969), 279–285 | DOI | MR | Zbl
[5] M. V. Ruzhanskii, UMN, 55:1 (2000), 99–170 | DOI | MR | Zbl
[6] M. Ruzhansky, J. Smith, Dispersive and Strichartz estimates for hyperbolic equations with constant coefficients, http://arxiv.org/abs/0711.2138 | MR
[7] M. Sugimoto, Math. Z., 215:4 (1994), 519–531 | DOI | MR | Zbl