A Characterization of the Algebra $C_\beta(\Omega)$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 85-87
Voir la notice de l'article provenant de la source Math-Net.Ru
We study some properties of algebras of continuous functions on a locally compact space, these algebras being equipped with the topology defined by a family of multiplication operators ($\beta$-uniform algebras). We prove an analog of a theorem due to Sheinberg for $\beta$-uniform algebras [see Uspekhi Mat. Nauk, 32:5 (197) (1977), 203–204].
Keywords:
$\beta$-uniform algebra, cohomology, derivative, $\beta$-topology
Mots-clés : amenable algebra.
Mots-clés : amenable algebra.
@article{FAA_2009_43_1_a6,
author = {M. I. Karahanyan and T. A. Khor'kova},
title = {A {Characterization} of the {Algebra} $C_\beta(\Omega)$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {85--87},
publisher = {mathdoc},
volume = {43},
number = {1},
year = {2009},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a6/}
}
M. I. Karahanyan; T. A. Khor'kova. A Characterization of the Algebra $C_\beta(\Omega)$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 85-87. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a6/