A Characterization of the Algebra $C_\beta(\Omega)$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 85-87.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study some properties of algebras of continuous functions on a locally compact space, these algebras being equipped with the topology defined by a family of multiplication operators ($\beta$-uniform algebras). We prove an analog of a theorem due to Sheinberg for $\beta$-uniform algebras [see Uspekhi Mat. Nauk, 32:5 (197) (1977), 203–204].
Keywords: $\beta$-uniform algebra, cohomology, derivative, $\beta$-topology
Mots-clés : amenable algebra.
@article{FAA_2009_43_1_a6,
     author = {M. I. Karahanyan and T. A. Khor'kova},
     title = {A {Characterization} of the {Algebra} $C_\beta(\Omega)$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {85--87},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {2009},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a6/}
}
TY  - JOUR
AU  - M. I. Karahanyan
AU  - T. A. Khor'kova
TI  - A Characterization of the Algebra $C_\beta(\Omega)$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2009
SP  - 85
EP  - 87
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a6/
LA  - ru
ID  - FAA_2009_43_1_a6
ER  - 
%0 Journal Article
%A M. I. Karahanyan
%A T. A. Khor'kova
%T A Characterization of the Algebra $C_\beta(\Omega)$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2009
%P 85-87
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a6/
%G ru
%F FAA_2009_43_1_a6
M. I. Karahanyan; T. A. Khor'kova. A Characterization of the Algebra $C_\beta(\Omega)$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 43 (2009) no. 1, pp. 85-87. http://geodesic.mathdoc.fr/item/FAA_2009_43_1_a6/

[1] R. C. Buck, Michigan Math. J., 5:2 (1958), 95–104 | DOI | MR | Zbl

[2] I. Glicksberg, Proc. Amer. Math. Soc., 14:2 (1963), 329–333 | DOI | MR | Zbl

[3] M. V. Sheinberg, UMN, 32:5 (197) (1977), 203–204 | MR

[4] A. Ya. Khelemskii, Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd. Mosk. un-ta, 1986 | MR

[5] F. F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag, Berlin–Heidelberg–New York, 1973 | MR | Zbl

[6] R. Johnson, Cohomology in Banach Algebras, Mem. Amer. Math. Soc., 127, 1972 | MR | Zbl

[7] M. V. Sheinberg, Vestn. MGU, ser. matem., mekh., 1971, no. 3, 53–58 | MR | Zbl

[8] M. V. Sheinberg, Vestn. MGU, ser. matem., mekh., 1972, no. 4, 39–45 | MR

[9] M. Rid, B. Saimon, Funktsionalnyi analiz, Mir, M., 1977 | MR

[10] U. Rudin, Funktsionalnyi analiz, Mir, M., 1975 | MR

[11] R. Giles, Trans. Amer. Math. Soc., 161 (1971), 467–474 | DOI | MR | Zbl

[12] U. Bratteli, D. Robinson, Operatornye algebry i kvantovaya statisticheskaya mekhanika, Mir, M., 1982 | MR | Zbl