The Limit Absorption Principle and Homogenization Procedure for Periodic Elliptic Operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 105-108.

Voir la notice de l'article provenant de la source Math-Net.Ru

For a periodic matrix elliptic operator $\mathcal{A}_\varepsilon$ with (${\mathbf x}/\varepsilon$-dependent) rapidly oscillating coefficients, a certain analog of the limit absorption principle is proved. It is shown that the bordered resolvent $\langle{\mathbf x}\rangle^{-1/2-\delta}(\mathcal{A}_\varepsilon-(\eta\pm i\varepsilon^\sigma)I)^{-1}\langle{\mathbf x}\rangle^{-1/2-\delta}$ has a limit in the operator norm in $L_2$ as $\varepsilon\to 0$ provided that $\eta>0$, $\delta>0$, and $0\sigma1/2$.
Keywords: periodic differential operators, homogenization, effective operator, limit absorption principle.
@article{FAA_2008_42_4_a8,
     author = {M. S. Birman and T. A. Suslina},
     title = {The {Limit} {Absorption} {Principle} and {Homogenization} {Procedure} for {Periodic} {Elliptic} {Operators}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {105--108},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a8/}
}
TY  - JOUR
AU  - M. S. Birman
AU  - T. A. Suslina
TI  - The Limit Absorption Principle and Homogenization Procedure for Periodic Elliptic Operators
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 105
EP  - 108
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a8/
LA  - ru
ID  - FAA_2008_42_4_a8
ER  - 
%0 Journal Article
%A M. S. Birman
%A T. A. Suslina
%T The Limit Absorption Principle and Homogenization Procedure for Periodic Elliptic Operators
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 105-108
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a8/
%G ru
%F FAA_2008_42_4_a8
M. S. Birman; T. A. Suslina. The Limit Absorption Principle and Homogenization Procedure for Periodic Elliptic Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 105-108. http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a8/

[1] M. Sh. Birman, T. A. Suslina, Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), Operator Theory: Adv. Appl., 129, Birkhäuser, Basel, 2001, 71–107 | MR | Zbl

[2] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl

[3] S. T. Kuroda, J. Math. Soc. Japan, 25:1 (1973), 75–104 | DOI | MR | Zbl

[4] S. T. Kuroda, J. Math. Soc. Japan, 25:2 (1973), 222–234 | DOI | MR | Zbl

[5] D. R. Yafaev, Mathematical Scattering Theory. Analytic Theory, Amer. Math. Soc. (to appear) | MR