Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2008_42_4_a8, author = {M. S. Birman and T. A. Suslina}, title = {The {Limit} {Absorption} {Principle} and {Homogenization} {Procedure} for {Periodic} {Elliptic} {Operators}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {105--108}, publisher = {mathdoc}, volume = {42}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a8/} }
TY - JOUR AU - M. S. Birman AU - T. A. Suslina TI - The Limit Absorption Principle and Homogenization Procedure for Periodic Elliptic Operators JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2008 SP - 105 EP - 108 VL - 42 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a8/ LA - ru ID - FAA_2008_42_4_a8 ER -
%0 Journal Article %A M. S. Birman %A T. A. Suslina %T The Limit Absorption Principle and Homogenization Procedure for Periodic Elliptic Operators %J Funkcionalʹnyj analiz i ego priloženiâ %D 2008 %P 105-108 %V 42 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a8/ %G ru %F FAA_2008_42_4_a8
M. S. Birman; T. A. Suslina. The Limit Absorption Principle and Homogenization Procedure for Periodic Elliptic Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 105-108. http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a8/
[1] M. Sh. Birman, T. A. Suslina, Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), Operator Theory: Adv. Appl., 129, Birkhäuser, Basel, 2001, 71–107 | MR | Zbl
[2] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl
[3] S. T. Kuroda, J. Math. Soc. Japan, 25:1 (1973), 75–104 | DOI | MR | Zbl
[4] S. T. Kuroda, J. Math. Soc. Japan, 25:2 (1973), 222–234 | DOI | MR | Zbl
[5] D. R. Yafaev, Mathematical Scattering Theory. Analytic Theory, Amer. Math. Soc. (to appear) | MR