The Limit Absorption Principle and Homogenization Procedure for Periodic Elliptic Operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 105-108
Cet article a éte moissonné depuis la source Math-Net.Ru
For a periodic matrix elliptic operator $\mathcal{A}_\varepsilon$ with (${\mathbf x}/\varepsilon$-dependent) rapidly oscillating coefficients, a certain analog of the limit absorption principle is proved. It is shown that the bordered resolvent $\langle{\mathbf x}\rangle^{-1/2-\delta}(\mathcal{A}_\varepsilon-(\eta\pm i\varepsilon^\sigma)I)^{-1}\langle{\mathbf x}\rangle^{-1/2-\delta}$ has a limit in the operator norm in $L_2$ as $\varepsilon\to 0$ provided that $\eta>0$, $\delta>0$, and $0\sigma1/2$.
Keywords:
periodic differential operators, homogenization, effective operator, limit absorption principle.
@article{FAA_2008_42_4_a8,
author = {M. S. Birman and T. A. Suslina},
title = {The {Limit} {Absorption} {Principle} and {Homogenization} {Procedure} for {Periodic} {Elliptic} {Operators}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {105--108},
year = {2008},
volume = {42},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a8/}
}
TY - JOUR AU - M. S. Birman AU - T. A. Suslina TI - The Limit Absorption Principle and Homogenization Procedure for Periodic Elliptic Operators JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2008 SP - 105 EP - 108 VL - 42 IS - 4 UR - http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a8/ LA - ru ID - FAA_2008_42_4_a8 ER -
M. S. Birman; T. A. Suslina. The Limit Absorption Principle and Homogenization Procedure for Periodic Elliptic Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 105-108. http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a8/
[1] M. Sh. Birman, T. A. Suslina, Systems, Approximation, Singular Integral Operators, and Related Topics (Bordeaux, 2000), Operator Theory: Adv. Appl., 129, Birkhäuser, Basel, 2001, 71–107 | MR | Zbl
[2] M. Sh. Birman, T. A. Suslina, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl
[3] S. T. Kuroda, J. Math. Soc. Japan, 25:1 (1973), 75–104 | DOI | MR | Zbl
[4] S. T. Kuroda, J. Math. Soc. Japan, 25:2 (1973), 222–234 | DOI | MR | Zbl
[5] D. R. Yafaev, Mathematical Scattering Theory. Analytic Theory, Amer. Math. Soc. (to appear) | MR