@article{FAA_2008_42_4_a4,
author = {Yu. S. Ilyashenko},
title = {Diffeomorphisms with {Intermingled} {Attracting} {Basins}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {60--71},
year = {2008},
volume = {42},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a4/}
}
Yu. S. Ilyashenko. Diffeomorphisms with Intermingled Attracting Basins. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 60-71. http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a4/
[1] A. Bonifant, J. Milnor, Schwarzian Derivatives and Cylinder Maps, Preprint, 2007 | MR
[2] M. W. Hirsch, C. C. Pugh, M. Shub, Invariant Manifolds, Lecture Notes in Math., 583, Springer-Verlag, Berlin–New York, 1977 | DOI | MR | Zbl
[3] I. Kan, “Open sets of diffeomorphisms having two attractors, each with an everywhere dense basin”, Bull. Amer. Math. Soc., 31:1 (1994), 68–74 | DOI | MR | Zbl
[4] J. Palis, “A global perspective for non-conservative dynamics”, Ann. Inst. H. Poincaré Anal. Non Linéaire, 22:4 (2005), 485–507 | DOI | MR | Zbl
[5] Ya. Pesin, Lectures on Partial Hyperbolicity and Stable Ergodicity, Zurich Lectures in Advanced Math., European Math. Soc., Zürich, 2004 | MR | Zbl
[6] Yu. Ilyashenko, V. Kleptsyn, P. Saltykov, “Openness of the set of boundary preserving maps of an annulus with intermingled attracting basins”, J. Fixed Point Theory Appl., 3:2 (2008), 449–463 | DOI | MR | Zbl