Horospherical Transform on Riemannian Symmetric Manifolds of Noncompact Type
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 50-59

Voir la notice de l'article provenant de la source Math-Net.Ru

We discuss I. M. Gelfand's project of rebuilding the representation theory of semisimple Lie groups on the basis of integral geometry. The basic examples are related to harmonic analysis and the horospherical transform on symmetric manifolds. Specifically, we consider the inversion of this transform on Riemannian symmetric manifolds of noncompact type. In the known explicit inversion formulas, the nonlocal part essentially depends on the type of the root system. We suggest a universal modification of this operator.
Keywords: symmetric manifold, horospherical transform
Mots-clés : inversion formula, Plancherel formula.
@article{FAA_2008_42_4_a3,
     author = {S. G. Gindikin},
     title = {Horospherical {Transform} on {Riemannian} {Symmetric} {Manifolds} of {Noncompact} {Type}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {50--59},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a3/}
}
TY  - JOUR
AU  - S. G. Gindikin
TI  - Horospherical Transform on Riemannian Symmetric Manifolds of Noncompact Type
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 50
EP  - 59
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a3/
LA  - ru
ID  - FAA_2008_42_4_a3
ER  - 
%0 Journal Article
%A S. G. Gindikin
%T Horospherical Transform on Riemannian Symmetric Manifolds of Noncompact Type
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 50-59
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a3/
%G ru
%F FAA_2008_42_4_a3
S. G. Gindikin. Horospherical Transform on Riemannian Symmetric Manifolds of Noncompact Type. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 50-59. http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a3/