Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2008_42_4_a2, author = {A. M. Vershik and M. I. Graev}, title = {Integral {Models} of {Unitary} {Representations} of {Current} {Groups} with {Values} in {Semidirect} {Products}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {37--49}, publisher = {mathdoc}, volume = {42}, number = {4}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a2/} }
TY - JOUR AU - A. M. Vershik AU - M. I. Graev TI - Integral Models of Unitary Representations of Current Groups with Values in Semidirect Products JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2008 SP - 37 EP - 49 VL - 42 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a2/ LA - ru ID - FAA_2008_42_4_a2 ER -
%0 Journal Article %A A. M. Vershik %A M. I. Graev %T Integral Models of Unitary Representations of Current Groups with Values in Semidirect Products %J Funkcionalʹnyj analiz i ego priloženiâ %D 2008 %P 37-49 %V 42 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a2/ %G ru %F FAA_2008_42_4_a2
A. M. Vershik; M. I. Graev. Integral Models of Unitary Representations of Current Groups with Values in Semidirect Products. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 37-49. http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a2/
[1] H. Araki, “Factorizable representations of the current algebra”, Publ. RIMS Kyoto Univ. Ser. A, 5:3 (1970), 361–422 | DOI | MR | Zbl
[2] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Predstavleniya gruppy $SL(2,R)$, gde $R$ — koltso funktsii”, UMN, 28:5 (1973), 83–128 | MR
[3] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Neprivodimye predstavleniya gruppy $G^X$ i kogomologii”, Funkts. analiz i ego pril., 8:2 (1974), 67–69 | MR | Zbl
[4] F. A. Berezin, “Predstavleniya nepreryvnogo pryamogo proizvedeniya universalnykh nakryvayuschikh gruppy dvizhenii kompleksnogo shara”, Trudy MMO, 36, 1978, 275–293 | MR | Zbl
[5] I. M. Gelfand, M. I. Graev, A. M. Vershik, “Models of representations of current groups”, Representations of Lie groups and Lie algebras, Akad. Kiado, Budapest, 1985, 121–179 | MR
[6] I. M. Gelfand, M. I. Graev, “Osobye predstavleniya gruppy $SU(n,1)$ i proektivnye unitarnye predstavleniya gruppy tokov $SU(n,1^X)$”, Dokl. RAN, 332:3 (1993), 280–282 | MR
[7] A. M. Vershik, M. I. Graev, “Kommutativnaya model predstavleniya gruppy $O(n,1)^X$ i obobschennaya lebegova mera v prostranstve raspredelenii”, Funkts. analiz i ego pril., 39:2 (2005), 1–12 | DOI | MR | Zbl
[8] A. M. Vershik, M. I. Graev, “Struktura dopolnitelnykh serii i osobykh predstavlenii grupp $O(n,1)$ i $U(n,1)$”, UMN, 61:5 (2006), 3–88 | DOI | MR | Zbl
[9] M. I. Graev, A. M. Vershik, “The basic representation of the current group $O(n,1)^X$ in the $L^2$ space over the generalized Lebesgue measure”, Indag. Math., 16:3/4 (2005), 499–529 | DOI | MR | Zbl
[10] A. M. Vershik, M. I. Graev, “Integralnye modeli predstavlenii grupp tokov”, Funkts. analiz i ego pril., 42:1 (2008), 22–32 | DOI | MR
[11] A. M. Vershik, “Suschestvuet li mera Lebega v beskonechnomernom prostranstve?”, Trudy MIRAN, 259, 2007, 256–281 | MR
[12] A. Vershik, “Invariant measures for continual Cartan subgroup”, J. Funct. Anal., 2008 (to appear) | MR
[13] A. M. Vershik, S. I. Karpushev, “Kogomologii grupp v unitarnykh predstavleniyakh, okrestnost edinitsy i uslovno polozhitelno opredelennye funktsii”, Matem. sb., 119:4 (1982), 521–533 | MR | Zbl
[14] A. M. Vershik, N. V. Tsilevich, “Fokovskie faktorizatsii i razlozheniya prostranstva $L^2$ nad obschimi protsessami Levi”, UMN, 58:3 (351) (2003), 3–50 | DOI | MR | Zbl
[15] N. Tsilevich, A. Vershik, M. Yor, “An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process”, J. Funct. Anal., 185:1 (2001), 274–296 | DOI | MR | Zbl
[16] R. S. Ismagilov, Representations of Infinite-Dimensional Groups, Transl. Math. Monograph., 152, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR | Zbl
[17] B. Tsirelson, A. Vershik, “Examples of nonlinear continuous tensor products of measure spaces and non-Fock factorizations”, Rev. Math. Phys., 10:1 (1998), 81–145 | DOI | MR | Zbl
[18] E. Khyuitt, K. Ross, Abstraktnyi garmonicheskii analiz, t. 2, M., Mir, 1970