Integral Models of Unitary Representations of Current Groups with Values in Semidirect Products
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 37-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

We describe a general construction of irreducible unitary representations of the group of currents with values in the semidirect product of a locally compact subgroup $P_0$ by a one-parameter group $\mathbb{R}^*_+=\{r:r>0\}$ of automorphisms of $P_0$. This construction is determined by a faithful unitary representation of $P_0$ (canonical representation) whose images under the action of the group of automorphisms tend to the identity representation as $r\to 0$. We apply this construction to the current groups of maximal parabolic subgroups in the groups of motions of the $n$-dimensional real and complex Lobachevsky spaces. The obtained representations of the current groups of parabolic subgroups uniquely extend to the groups of currents with values in the groups $O(n,1)$ and $U(n,1)$. This gives a new description of the representations, constructed in the 1970s and realized in the Fock space, of the current groups of the latter groups. The key role in our construction is played by the so-called special representation of the parabolic subgroup $P$ and a remarkable $\sigma$-finite measure (Lebesgue measure) $\mathcal L$ on the space of distributions.
Keywords: current group, integral model, Fock representation, special representation, infinite-dimensional Lebesgue measure.
@article{FAA_2008_42_4_a2,
     author = {A. M. Vershik and M. I. Graev},
     title = {Integral {Models} of {Unitary} {Representations} of {Current} {Groups} with {Values} in {Semidirect} {Products}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {37--49},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a2/}
}
TY  - JOUR
AU  - A. M. Vershik
AU  - M. I. Graev
TI  - Integral Models of Unitary Representations of Current Groups with Values in Semidirect Products
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 37
EP  - 49
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a2/
LA  - ru
ID  - FAA_2008_42_4_a2
ER  - 
%0 Journal Article
%A A. M. Vershik
%A M. I. Graev
%T Integral Models of Unitary Representations of Current Groups with Values in Semidirect Products
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 37-49
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a2/
%G ru
%F FAA_2008_42_4_a2
A. M. Vershik; M. I. Graev. Integral Models of Unitary Representations of Current Groups with Values in Semidirect Products. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 37-49. http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a2/

[1] H. Araki, “Factorizable representations of the current algebra”, Publ. RIMS Kyoto Univ. Ser. A, 5:3 (1970), 361–422 | DOI | MR | Zbl

[2] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Predstavleniya gruppy $SL(2,R)$, gde $R$ — koltso funktsii”, UMN, 28:5 (1973), 83–128 | MR

[3] A. M. Vershik, I. M. Gelfand, M. I. Graev, “Neprivodimye predstavleniya gruppy $G^X$ i kogomologii”, Funkts. analiz i ego pril., 8:2 (1974), 67–69 | MR | Zbl

[4] F. A. Berezin, “Predstavleniya nepreryvnogo pryamogo proizvedeniya universalnykh nakryvayuschikh gruppy dvizhenii kompleksnogo shara”, Trudy MMO, 36, 1978, 275–293 | MR | Zbl

[5] I. M. Gelfand, M. I. Graev, A. M. Vershik, “Models of representations of current groups”, Representations of Lie groups and Lie algebras, Akad. Kiado, Budapest, 1985, 121–179 | MR

[6] I. M. Gelfand, M. I. Graev, “Osobye predstavleniya gruppy $SU(n,1)$ i proektivnye unitarnye predstavleniya gruppy tokov $SU(n,1^X)$”, Dokl. RAN, 332:3 (1993), 280–282 | MR

[7] A. M. Vershik, M. I. Graev, “Kommutativnaya model predstavleniya gruppy $O(n,1)^X$ i obobschennaya lebegova mera v prostranstve raspredelenii”, Funkts. analiz i ego pril., 39:2 (2005), 1–12 | DOI | MR | Zbl

[8] A. M. Vershik, M. I. Graev, “Struktura dopolnitelnykh serii i osobykh predstavlenii grupp $O(n,1)$ i $U(n,1)$”, UMN, 61:5 (2006), 3–88 | DOI | MR | Zbl

[9] M. I. Graev, A. M. Vershik, “The basic representation of the current group $O(n,1)^X$ in the $L^2$ space over the generalized Lebesgue measure”, Indag. Math., 16:3/4 (2005), 499–529 | DOI | MR | Zbl

[10] A. M. Vershik, M. I. Graev, “Integralnye modeli predstavlenii grupp tokov”, Funkts. analiz i ego pril., 42:1 (2008), 22–32 | DOI | MR

[11] A. M. Vershik, “Suschestvuet li mera Lebega v beskonechnomernom prostranstve?”, Trudy MIRAN, 259, 2007, 256–281 | MR

[12] A. Vershik, “Invariant measures for continual Cartan subgroup”, J. Funct. Anal., 2008 (to appear) | MR

[13] A. M. Vershik, S. I. Karpushev, “Kogomologii grupp v unitarnykh predstavleniyakh, okrestnost edinitsy i uslovno polozhitelno opredelennye funktsii”, Matem. sb., 119:4 (1982), 521–533 | MR | Zbl

[14] A. M. Vershik, N. V. Tsilevich, “Fokovskie faktorizatsii i razlozheniya prostranstva $L^2$ nad obschimi protsessami Levi”, UMN, 58:3 (351) (2003), 3–50 | DOI | MR | Zbl

[15] N. Tsilevich, A. Vershik, M. Yor, “An infinite-dimensional analogue of the Lebesgue measure and distinguished properties of the gamma process”, J. Funct. Anal., 185:1 (2001), 274–296 | DOI | MR | Zbl

[16] R. S. Ismagilov, Representations of Infinite-Dimensional Groups, Transl. Math. Monograph., 152, Amer. Math. Soc., Providence, RI, 1996 | DOI | MR | Zbl

[17] B. Tsirelson, A. Vershik, “Examples of nonlinear continuous tensor products of measure spaces and non-Fock factorizations”, Rev. Math. Phys., 10:1 (1998), 81–145 | DOI | MR | Zbl

[18] E. Khyuitt, K. Ross, Abstraktnyi garmonicheskii analiz, t. 2, M., Mir, 1970