Solution of the Problem of Differentiation of Abelian Functions over Parameters for Families of $(n,s)$-Curves
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 24-36.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider a wide class of models of plane algebraic curves, so-called $(n,s)$-curves. The case $(2,3)$ is the classical Weierstrass model of an elliptic curve. On the basis of the theory of multivariate sigma functions, for every pair of coprime $n$ and $s$ we obtain an effective description of the Lie algebra of derivations of the field of fiberwise Abelian functions defined on the total space of the bundle whose base is the parameter space of the family of nondegenerate $(n,s)$-curves and whose fibers are the Jacobi varieties of these curves. The essence of the method is demonstrated by the example of Weierstrass elliptic functions. Details are given for the case of a family of genus 2 curves.
Keywords: sigma function, differentiation with respect to parameters, universal bundle of Jacobi varieties, $(n,s)$-curve, vector field tangent to the discriminant of a singularity.
@article{FAA_2008_42_4_a1,
     author = {V. M. Buchstaber and D. V. Leikin},
     title = {Solution of the {Problem} of {Differentiation} of {Abelian} {Functions} over {Parameters} for {Families} of $(n,s)${-Curves}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {24--36},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a1/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - D. V. Leikin
TI  - Solution of the Problem of Differentiation of Abelian Functions over Parameters for Families of $(n,s)$-Curves
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 24
EP  - 36
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a1/
LA  - ru
ID  - FAA_2008_42_4_a1
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A D. V. Leikin
%T Solution of the Problem of Differentiation of Abelian Functions over Parameters for Families of $(n,s)$-Curves
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 24-36
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a1/
%G ru
%F FAA_2008_42_4_a1
V. M. Buchstaber; D. V. Leikin. Solution of the Problem of Differentiation of Abelian Functions over Parameters for Families of $(n,s)$-Curves. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 4, pp. 24-36. http://geodesic.mathdoc.fr/item/FAA_2008_42_4_a1/

[1] V. I. Arnold, Osobennosti kaustik i volnovykh frontov, FAZIS, Moskva, 1996 | MR

[2] V. I. Arnold, A. N. Varchenko, S. M. Gusein-Zade, Osobennosti differentsiruemykh otobrazhenii, MTsNMO, M., 2004

[3] G. Beiker, Abelevy funktsii, MTsNMO, M., 2008

[4] V. M. Buchstaber, V. Z. Enolskii, D. V. Leykin, “Hyperelliptic Kleinian functions and applications”, Solitons, Geometry and Topology: On the Crossroad, Adv. Math. Sci., Amer. Math. Soc. Transl. Ser. 2, 179, Amer. Math. Soc., Providence, RI, 1997, 1–34 | MR

[5] V. M. Buchstaber, V. Z. Enolskii, D. V. Leykin, “Kleinian functions, hyperelliptic Jacobians and applications”, Rev. Math. Math. Phys., 10:2 (1997), 3–120 | MR | Zbl

[6] V. M. Bukhshtaber, D. V. Leikin, V. Z. Enolskii, “Ratsionalnye analogi abelevykh funktsii”, Funkts. analiz i ego pril., 33:2 (1999), 1–15 | DOI | MR | Zbl

[7] V. M. Bukhshtaber, D. V. Leikin, “Polinomialnye algebry Li”, Funkts. analiz i ego pril., 36:4 (2002), 18–34 | DOI | MR | Zbl

[8] V. M. Bukhshtaber, D. V. Leikin, “Uravneniya teploprovodnosti v negolonomnom repere”, Funkts. analiz i ego pril., 38:2 (2004), 12–27 | DOI | MR

[9] V. M. Bukhshtaber, D. V. Leikin, “Differentsirovanie abelevykh funktsii po parametram”, UMN, 62:4 (2007), 153–154 | DOI | MR

[10] B. A. Dubrovin, “Geometry of 2D topological field theories”, Lecture Notes in Math., 1620, 1994, 120–348 | DOI | MR

[11] B. A. Dubpovin, S. P. Hovikov, “Periodicheskaya zadacha dlya uravneniya Kortevega–de Friza i Shturma–Liuvillya. Ikh svyaz s algebraicheskoi geometriei”, Dokl. AN SSCR, 219:3 (1974), 531–534

[12] F. G. Frobenius, L. Stickelberger, “Über die Differentiation der elliptischen Functionen nach den Perioden und Invarianten”, J. Reine Angew. Math., 92 (1882), 311–337 | MR

[13] A. B. Givental, “Svorachivanie invariantov grupp, porozhdennykh otrazheniyami i svyazannykh s prostymi osobennostyami funktsii”, Funkts. analiz i ego pril., 14:2 (1980), 4–14 | MR | Zbl

[14] K. Weierstrass, “Zur Theorie der elliptischen Funktionen”, Mathematische Werke, 2, Teubner, Berlin, 1894, 245–255

[15] K. Weierstrass, Abelschen Funktionen, Gesammelte Werke, 4, 1904

[16] V. M. Zakalyukin, “Perestroiki volnovykh frontov, zavisyaschikh ot odnogo parametra”, Funkts. analiz i ego pril., 10:2 (1976), 69–70 | MR | Zbl