On the Uniform Kreiss Resolvent Condition
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 81-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $B$ be a Banach space with norm ${\|\cdot\|}$ and identity operator $I$. We prove that, for a bounded linear operator $T$ in $B$, the strong Kreiss resolvent condition $$ \|(T-\lambda I)^{-k}\|\le\frac{M}{(|\lambda|-1)^k},\qquad|\lambda|>1,\ k=1,2,\dots, $$ implies the uniform Kreiss resolvent condition $$ \bigg\|\sum_{k=0}^n \frac{T^k}{\lambda^{k+1}}\bigg\|\le\frac{L}{|\lambda|-1},\qquad|\lambda|>1,\ n=0,1,2,\dotsc. $$ We establish that an operator $T$ satisfies the uniform Kreiss resolvent condition if and only if so does the operator $T^m$ for each integer $m\ge 2$.
Keywords: Banach space, bounded linear operator, Kreiss resolvent condition.
@article{FAA_2008_42_3_a9,
     author = {A. M. Gomilko and Ya. Zemanek},
     title = {On the {Uniform} {Kreiss} {Resolvent} {Condition}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {81--84},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a9/}
}
TY  - JOUR
AU  - A. M. Gomilko
AU  - Ya. Zemanek
TI  - On the Uniform Kreiss Resolvent Condition
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 81
EP  - 84
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a9/
LA  - ru
ID  - FAA_2008_42_3_a9
ER  - 
%0 Journal Article
%A A. M. Gomilko
%A Ya. Zemanek
%T On the Uniform Kreiss Resolvent Condition
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 81-84
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a9/
%G ru
%F FAA_2008_42_3_a9
A. M. Gomilko; Ya. Zemanek. On the Uniform Kreiss Resolvent Condition. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 81-84. http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a9/

[1] J. C. Strikwerda, B. A. Wade, Linear operators, 38, Banach Center Publications, 1997, 339–360 | MR | Zbl

[2] A. Montes-Rodríguez, J. Sánchez-Álvarez, J. Zemánek, Proc. London Math. Soc. (3), 91:3 (2005), 761–788 | DOI | MR | Zbl

[3] A. L. Shields, Acta Sci. Math., 40:3–4 (1978), 371–374 | MR | Zbl

[4] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl

[5] F. Olver, Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | MR | Zbl

[6] N. N. Lebedev, Spetsialnye funktsii i ikh prilozheniya, Fizmatgiz, M.-L., 1963 | MR | Zbl

[7] N. Yu. Bakaev, J. Difference Equations Appl., 4:3 (1998), 343–364 | DOI | MR | Zbl