On the Uniform Kreiss Resolvent Condition
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 81-84
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $B$ be a Banach space with norm ${\|\cdot\|}$ and identity operator $I$. We prove that, for a bounded linear operator $T$ in $B$, the strong Kreiss resolvent condition $$ \|(T-\lambda I)^{-k}\|\le\frac{M}{(|\lambda|-1)^k},\qquad|\lambda|>1,\ k=1,2,\dots, $$ implies the uniform Kreiss resolvent condition $$ \bigg\|\sum_{k=0}^n \frac{T^k}{\lambda^{k+1}}\bigg\|\le\frac{L}{|\lambda|-1},\qquad|\lambda|>1,\ n=0,1,2,\dotsc. $$ We establish that an operator $T$ satisfies the uniform Kreiss resolvent condition if and only if so does the operator $T^m$ for each integer $m\ge 2$.
Keywords:
Banach space, bounded linear operator, Kreiss resolvent condition.
@article{FAA_2008_42_3_a9,
author = {A. M. Gomilko and Ya. Zemanek},
title = {On the {Uniform} {Kreiss} {Resolvent} {Condition}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {81--84},
year = {2008},
volume = {42},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a9/}
}
A. M. Gomilko; Ya. Zemanek. On the Uniform Kreiss Resolvent Condition. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 81-84. http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a9/
[1] J. C. Strikwerda, B. A. Wade, Linear operators, 38, Banach Center Publications, 1997, 339–360 | MR | Zbl
[2] A. Montes-Rodríguez, J. Sánchez-Álvarez, J. Zemánek, Proc. London Math. Soc. (3), 91:3 (2005), 761–788 | DOI | MR | Zbl
[3] A. L. Shields, Acta Sci. Math., 40:3–4 (1978), 371–374 | MR | Zbl
[4] T. Kato, Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972 | MR | Zbl
[5] F. Olver, Asimptotika i spetsialnye funktsii, Nauka, M., 1990 | MR | Zbl
[6] N. N. Lebedev, Spetsialnye funktsii i ikh prilozheniya, Fizmatgiz, M.-L., 1963 | MR | Zbl
[7] N. Yu. Bakaev, J. Difference Equations Appl., 4:3 (1998), 343–364 | DOI | MR | Zbl