On the Measure with Maximal Entropy for the Teichm\"uller Flow on the Moduli Space of Abelian Differentials
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 75-77.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Teichmüller flow $g_t$ on the moduli space of Abelian differentials with zeros of given orders on a Riemann surface of a given genus is considered. This flow is known to preserve a finite absolutely continuous measure and is ergodic on every connected component $\mathcal H$ of the moduli space. The main result of the paper is that $\mu/\mu(\mathcal H)$ is the unique measure with maximal entropy for the restriction of $g_t$ to $\mathcal H$. The proof is based on the symbolic representation of $g_t$.
Mots-clés : moduli space
Keywords: Teichmüller flow, suspension flow, topological Bernoulli shift, topological Markov shift, Markov–Bernoulli reduction.
@article{FAA_2008_42_3_a7,
     author = {A. I. Bufetov and B. M. Gurevich},
     title = {On the {Measure} with {Maximal} {Entropy} for the {Teichm\"uller} {Flow} on the {Moduli} {Space} of {Abelian} {Differentials}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {75--77},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a7/}
}
TY  - JOUR
AU  - A. I. Bufetov
AU  - B. M. Gurevich
TI  - On the Measure with Maximal Entropy for the Teichm\"uller Flow on the Moduli Space of Abelian Differentials
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 75
EP  - 77
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a7/
LA  - ru
ID  - FAA_2008_42_3_a7
ER  - 
%0 Journal Article
%A A. I. Bufetov
%A B. M. Gurevich
%T On the Measure with Maximal Entropy for the Teichm\"uller Flow on the Moduli Space of Abelian Differentials
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 75-77
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a7/
%G ru
%F FAA_2008_42_3_a7
A. I. Bufetov; B. M. Gurevich. On the Measure with Maximal Entropy for the Teichm\"uller Flow on the Moduli Space of Abelian Differentials. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 75-77. http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a7/

[1] L. M. Abramov, V. A. Rokhlin, Vestn. LGU, 1962, no. 2, vyp. 7, 5–13 | MR | Zbl

[2] A. I. Bufetov, J. Amer. Math. Soc., 19:3 (2006), 579–623 | DOI | MR | Zbl

[3] J. Buzzi, O. Sarig, Ergodic Theory Dynam. Systems, 23:5 (2003), 1383–1400 | DOI | MR | Zbl

[4] J. Hubbard, H. Masur, Acta. Math., 142:3–4 (1979), 221–274 | DOI | MR | Zbl

[5] M. Kontsevich, The Mathematical Beauty of Physics, Adv. Ser. Math. Phys., 24, World Sci. Publ., River Edge, NJ, 1997, 318–332 | MR | Zbl

[6] M. Kontsevich, A. Zorich, Invent. Math., 153:3 (2003), 631–678 | DOI | MR | Zbl

[7] H. Mazur, Ann. of Math. (2), 115:1 (1982), 169–200 | DOI | MR

[8] G. Rauzy, Acta Arith., 34:4 (1979), 315–328 | DOI | MR | Zbl

[9] W. Veech, Ann. of Math. (2), 115:1 (1982), 201–242 | DOI | MR | Zbl

[10] W. Veech, Ann. of Math. (2), 124:3 (1986), 441–530 | DOI | MR | Zbl

[11] A. Zorich, Frontiers in Number Theory, Physics and Geometry. Vol. 1. On Random Matrices, Zeta Functions, and Dynamical Systems, Springer-Verlag, Berlin, 2006, 437–583 | MR | Zbl