On Jordan Ideals and Submodules: Algebraic and Analytic Aspects
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 71-75
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mathcal{A}$ be an algebra, and let $X$ be an arbitrary $\mathcal{A}$-bimodule. A linear space $Y\subset X$ is called a Jordan $\mathcal{A}$-submodule if $Ay+yA\in Y$ for all $A\in\mathcal{A}$ and $y\in Y$. (For $X=\mathcal{A}$, this coincides with the notion of a Jordan ideal.) We study conditions under which Jordan submodules are subbimodules. General criteria are given in the purely algebraic situation as well as for the case of Banach bimodules over Banach algebras. We also consider symmetrically normed Jordan submodules over $C^*$-algebras. It turns out that there exist $C^*$-algebras in which not all Jordan ideals are ideals.
Keywords:
algebra, ideal, Jordan ideal, $C^*$-algebra, symmetrically normed ideal.
Mots-clés : bimodule
Mots-clés : bimodule
@article{FAA_2008_42_3_a6,
author = {M. Bresar and \`E. V. Kissin and V. S. Shulman},
title = {On {Jordan} {Ideals} and {Submodules:} {Algebraic} and {Analytic} {Aspects}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {71--75},
year = {2008},
volume = {42},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a6/}
}
TY - JOUR AU - M. Bresar AU - È. V. Kissin AU - V. S. Shulman TI - On Jordan Ideals and Submodules: Algebraic and Analytic Aspects JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2008 SP - 71 EP - 75 VL - 42 IS - 3 UR - http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a6/ LA - ru ID - FAA_2008_42_3_a6 ER -
M. Bresar; È. V. Kissin; V. S. Shulman. On Jordan Ideals and Submodules: Algebraic and Analytic Aspects. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 71-75. http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a6/
[1] M. Brešar, A. Fošner, M. Fošner, Monatsh. Math., 145 (2005), 1–10 | DOI | MR | Zbl
[2] P. Civin, B. Yood, Pacific J. Math., 15 (1965), 775–797 | DOI | MR | Zbl
[3] C. K. Fong, G. J. Murphy, Acta Sci. Math., 51 (1987), 441–456 | MR | Zbl
[4] I. N. Herstein, Topics in Ring Theory, The University of Chicago Press, Chicago, 1969 | MR | Zbl
[5] N. Jacobson, C. E. Rickart, Trans. Amer. Math. Soc., 69 (1950), 479–502 | DOI | MR | Zbl
[6] E. Kissin, V. S. Shulman, Quart. J. Math., 57:2 (2006), 215–239 | DOI | MR | Zbl