On Jordan Ideals and Submodules: Algebraic and Analytic Aspects
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 71-75.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal{A}$ be an algebra, and let $X$ be an arbitrary $\mathcal{A}$-bimodule. A linear space $Y\subset X$ is called a Jordan $\mathcal{A}$-submodule if $Ay+yA\in Y$ for all $A\in\mathcal{A}$ and $y\in Y$. (For $X=\mathcal{A}$, this coincides with the notion of a Jordan ideal.) We study conditions under which Jordan submodules are subbimodules. General criteria are given in the purely algebraic situation as well as for the case of Banach bimodules over Banach algebras. We also consider symmetrically normed Jordan submodules over $C^*$-algebras. It turns out that there exist $C^*$-algebras in which not all Jordan ideals are ideals.
Keywords: algebra, ideal, Jordan ideal, $C^*$-algebra, symmetrically normed ideal.
Mots-clés : bimodule
@article{FAA_2008_42_3_a6,
     author = {M. Bresar and \`E. V. Kissin and V. S. Shulman},
     title = {On {Jordan} {Ideals} and {Submodules:} {Algebraic} and {Analytic} {Aspects}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {71--75},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a6/}
}
TY  - JOUR
AU  - M. Bresar
AU  - È. V. Kissin
AU  - V. S. Shulman
TI  - On Jordan Ideals and Submodules: Algebraic and Analytic Aspects
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 71
EP  - 75
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a6/
LA  - ru
ID  - FAA_2008_42_3_a6
ER  - 
%0 Journal Article
%A M. Bresar
%A È. V. Kissin
%A V. S. Shulman
%T On Jordan Ideals and Submodules: Algebraic and Analytic Aspects
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 71-75
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a6/
%G ru
%F FAA_2008_42_3_a6
M. Bresar; È. V. Kissin; V. S. Shulman. On Jordan Ideals and Submodules: Algebraic and Analytic Aspects. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 71-75. http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a6/

[1] M. Brešar, A. Fošner, M. Fošner, Monatsh. Math., 145 (2005), 1–10 | DOI | MR | Zbl

[2] P. Civin, B. Yood, Pacific J. Math., 15 (1965), 775–797 | DOI | MR | Zbl

[3] C. K. Fong, G. J. Murphy, Acta Sci. Math., 51 (1987), 441–456 | MR | Zbl

[4] I. N. Herstein, Topics in Ring Theory, The University of Chicago Press, Chicago, 1969 | MR | Zbl

[5] N. Jacobson, C. E. Rickart, Trans. Amer. Math. Soc., 69 (1950), 479–502 | DOI | MR | Zbl

[6] E. Kissin, V. S. Shulman, Quart. J. Math., 57:2 (2006), 215–239 | DOI | MR | Zbl