Nonmatricial Version of the Arveson--Wittstock Extension Principle, and Its Generalization
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 63-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the algebra $\mathcal{B}=\mathcal{B}(H)$ of bounded operators in a Hilbert space $H$, $\mathcal{B}$-bimodules, and morphisms of these bimodules into the algebra $\mathcal{B}(L\otimes H)$, where $L$ is a Hilbert space. We study the problem of extension of a morphism defined on a sub-$\mathcal{B}$-bimodule $Y\subset Z$ to $Z$. This problem is solved for Ruan bimodules.
Mots-clés : Ruan bimodule, q-norm, q-space
Keywords: bimodule tensor product, completely bounded operator, Arveson–Wittstock theorem.
@article{FAA_2008_42_3_a5,
     author = {A. Ya. Helemskii},
     title = {Nonmatricial {Version} of the {Arveson--Wittstock} {Extension} {Principle,} and {Its} {Generalization}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {63--70},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a5/}
}
TY  - JOUR
AU  - A. Ya. Helemskii
TI  - Nonmatricial Version of the Arveson--Wittstock Extension Principle, and Its Generalization
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 63
EP  - 70
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a5/
LA  - ru
ID  - FAA_2008_42_3_a5
ER  - 
%0 Journal Article
%A A. Ya. Helemskii
%T Nonmatricial Version of the Arveson--Wittstock Extension Principle, and Its Generalization
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 63-70
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a5/
%G ru
%F FAA_2008_42_3_a5
A. Ya. Helemskii. Nonmatricial Version of the Arveson--Wittstock Extension Principle, and Its Generalization. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 63-70. http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a5/

[1] W. B. Arveson, “Subalgebras of $C^*$-algebras”, Acta Math., 123 (1969), 141–224 | DOI | MR | Zbl

[2] E. G. Effros, “Advances in quantized functional analysis”, Proc. ICM (Berkeley, 1986), Amer. Math. Soc., Providence, RI, 1987, 906–916 | MR

[3] E. G. Effros, Z.-J. Ruan, Operator Spaces, Clarendon Press, Oxford Univ. Press, New York, 2000 | MR | Zbl

[4] V. I. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge Univ. Press, Cambridge, 2002 | MR

[5] A. Ya. Khelemskii, Lektsii po funktsionalnomu analizu, MTsNMO, M., 2004

[6] A. Ya. Khelemskii, Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo MGU, M., 1986 | MR

[7] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR

[8] G. Pisier, Introduction to Operator Space Theory, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl

[9] A. Ya. Helemskii, “Tensor products in quantum functional analysis: non-matricial approach”, Proc. of the Conference “Topological Algebras and Applications 2005”, Contemp. Math., 427, Amer. Math. Soc., Providence, RI, 2007, 199–224 | DOI | MR

[10] G. Wittstock, “Ein operatorvertiger Hahn-Banachn Satz”, J. Funct. Anal., 40 (1981), 127–150 | DOI | MR | Zbl

[11] A. Ya. Khelemskii, “Kvantovye versii vektornoi dvoistvennosti i eksponentsialnogo zakona v ramkakh bezmatrichnogo podkhoda”, Matem. sb., 197:12 (2006), 133–156 | DOI | MR