Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2008_42_3_a5, author = {A. Ya. Helemskii}, title = {Nonmatricial {Version} of the {Arveson--Wittstock} {Extension} {Principle,} and {Its} {Generalization}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {63--70}, publisher = {mathdoc}, volume = {42}, number = {3}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a5/} }
TY - JOUR AU - A. Ya. Helemskii TI - Nonmatricial Version of the Arveson--Wittstock Extension Principle, and Its Generalization JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2008 SP - 63 EP - 70 VL - 42 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a5/ LA - ru ID - FAA_2008_42_3_a5 ER -
A. Ya. Helemskii. Nonmatricial Version of the Arveson--Wittstock Extension Principle, and Its Generalization. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 63-70. http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a5/
[1] W. B. Arveson, “Subalgebras of $C^*$-algebras”, Acta Math., 123 (1969), 141–224 | DOI | MR | Zbl
[2] E. G. Effros, “Advances in quantized functional analysis”, Proc. ICM (Berkeley, 1986), Amer. Math. Soc., Providence, RI, 1987, 906–916 | MR
[3] E. G. Effros, Z.-J. Ruan, Operator Spaces, Clarendon Press, Oxford Univ. Press, New York, 2000 | MR | Zbl
[4] V. I. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge Univ. Press, Cambridge, 2002 | MR
[5] A. Ya. Khelemskii, Lektsii po funktsionalnomu analizu, MTsNMO, M., 2004
[6] A. Ya. Khelemskii, Gomologiya v banakhovykh i topologicheskikh algebrakh, Izd-vo MGU, M., 1986 | MR
[7] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR
[8] G. Pisier, Introduction to Operator Space Theory, Cambridge Univ. Press, Cambridge, 2003 | MR | Zbl
[9] A. Ya. Helemskii, “Tensor products in quantum functional analysis: non-matricial approach”, Proc. of the Conference “Topological Algebras and Applications 2005”, Contemp. Math., 427, Amer. Math. Soc., Providence, RI, 2007, 199–224 | DOI | MR
[10] G. Wittstock, “Ein operatorvertiger Hahn-Banachn Satz”, J. Funct. Anal., 40 (1981), 127–150 | DOI | MR | Zbl
[11] A. Ya. Khelemskii, “Kvantovye versii vektornoi dvoistvennosti i eksponentsialnogo zakona v ramkakh bezmatrichnogo podkhoda”, Matem. sb., 197:12 (2006), 133–156 | DOI | MR