On the Completeness of the System of Root Vectors of the Sturm--Liouville Operator with General Boundary Conditions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 45-52.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study general boundary value problems with nondegenerate characteristic determinant $\Delta(\lambda)$ for the Sturm–Liouville equation on the interval $[0,1]$. Necessary and sufficient conditions for the completeness of root vectors are obtained in terms of the potential. In particular, it is shown that if $\Delta(\lambda)\ne\mathrm{const}$, $q(\cdot)\in C^k[0,1]$ for some $k\ge 0$, and $q^{(k)}(0)\ne(-1)^kq^{(k)}(1)$, then the system of root vectors is complete and minimal in $L^p[0,1]$ for $p\in[1,\infty)$.
Mots-clés : Sturm–Liouville equation
Keywords: completeness of the system of root vectors, nondegenerate boundary conditions.
@article{FAA_2008_42_3_a3,
     author = {M. M. Malamud},
     title = {On the {Completeness} of the {System} of {Root} {Vectors} of the {Sturm--Liouville} {Operator} with {General} {Boundary} {Conditions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {45--52},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a3/}
}
TY  - JOUR
AU  - M. M. Malamud
TI  - On the Completeness of the System of Root Vectors of the Sturm--Liouville Operator with General Boundary Conditions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 45
EP  - 52
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a3/
LA  - ru
ID  - FAA_2008_42_3_a3
ER  - 
%0 Journal Article
%A M. M. Malamud
%T On the Completeness of the System of Root Vectors of the Sturm--Liouville Operator with General Boundary Conditions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 45-52
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a3/
%G ru
%F FAA_2008_42_3_a3
M. M. Malamud. On the Completeness of the System of Root Vectors of the Sturm--Liouville Operator with General Boundary Conditions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 45-52. http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a3/

[1] B. N. Biyarov, S. A. Dzhumabaev, “Kriterii volterrovosti kraevykh zadach dlya uravneniya Shturma–Liuvillya”, Matem. zametki, 56:1 (1994), 143–146 | MR | Zbl

[2] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu nesamosopryazhennykh operatorov, Nauka, M., 1965

[3] B. M. Levitan, Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR | Zbl

[4] M. M. Malamud, “Podobie operatorov Volterra i smezhnye voprosy v teorii differentsialnykh uravnenii drobnykh poryadkov”, Trudy MMO, 55, 1994, 73–148 | MR | Zbl

[5] A. S. Markus, Vvedenie v spektralnuyu teoriyu polinomialnykh operatornykh puchkov, Shtiintsa, Kishinev, 1986 | MR | Zbl

[6] V. A. Marchenko, Uravneniya Shturma–Liuvillya i ikh prilozheniya, Naukova dumka, Kiev, 1977 | MR

[7] V. P. Maslov, Operatornye metody, Nauka, M., 1973 | MR

[8] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR | Zbl

[9] A. A. Shkalikov, “Kraevye zadachi dlya obyknovennykh differentsialnykh uravnenii s parametrom v granichnykh usloviyakh”, Trudy sem. Petrovskogo, 9, 1983, 190–229 | MR | Zbl

[10] A. A. Shkalikov, “Spectral analysis of the Regge problem”, Russ. J. Math. Phys., 8:3 (2001), 356–364 | MR | Zbl