Nonintersecting Paths and the Hahn Orthogonal Polynomial Ensemble
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 23-44.

Voir la notice de l'article provenant de la source Math-Net.Ru

We compute the bulk limit of the correlation functions for the uniform measure on lozenge tilings of a hexagon. The limiting determinantal process is a translation-invariant extension of the discrete sine process, which can also be described by an ergodic Gibbs measure with appropriate parameters.
Keywords: tiling of a hexagon, determinantal process
Mots-clés : plane partition, orthogonal polynomial ensemble.
@article{FAA_2008_42_3_a2,
     author = {V. E. Gorin},
     title = {Nonintersecting {Paths} and the {Hahn} {Orthogonal} {Polynomial} {Ensemble}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {23--44},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a2/}
}
TY  - JOUR
AU  - V. E. Gorin
TI  - Nonintersecting Paths and the Hahn Orthogonal Polynomial Ensemble
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 23
EP  - 44
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a2/
LA  - ru
ID  - FAA_2008_42_3_a2
ER  - 
%0 Journal Article
%A V. E. Gorin
%T Nonintersecting Paths and the Hahn Orthogonal Polynomial Ensemble
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 23-44
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a2/
%G ru
%F FAA_2008_42_3_a2
V. E. Gorin. Nonintersecting Paths and the Hahn Orthogonal Polynomial Ensemble. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 23-44. http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a2/

[1] J. Baik, T. Kriecherbauer, K. T.-R. McLaughlin, P. D. Miller, Discrete Orthogonal Polynomials: Asymptotics and Applications, Annals of Math. Studies, 164, Princeton University Press, 2007 ; http://arxiv.org/abs/math/0310278 | MR | Zbl

[2] A. Borodin, “Periodic Schur process and cylindric partitions”, Duke Math. J., 140:3 (2007), 391–468 ; http://arxiv.org/abs/math/0601019 | DOI | MR | Zbl

[3] A. Borodin, A. Okounkov, G. Olshanski, “Asymptotics of Plancherel measures for symmetric groups”, J. Amer. Math. Soc., 13:3 (2000), 481–515 ; http://arxiv.org/abs/math/9905032 | DOI | MR | Zbl

[4] A. Borodin, G. Olshanski, “Markov processes on partitions”, Probab. Theory Related Fields, 135:1 (2006), 84–152 ; http://arxiv.org/abs/math-ph/0409075 | DOI | MR | Zbl

[5] A. Borodin, G. Olshanski, “Asymptotics of Plancherel-type random partitions”, J. Algebra, 313:1 (2007), 40–60 ; http://arxiv.org/abs/math/0610240 | DOI | MR | Zbl

[6] G. Beitman, A. Erdeii, Vysshie transtsendentnye funktsii, t. 1, Fizmatlit, M., 1973

[7] H. Cohn, R. Kenyon, J. Propp, “A variational principle for domino tilings”, J. Amer. Math. Soc., 14:2 (2001), 297–346 ; http://arxiv.org/abs/math/0008220 | DOI | MR | Zbl

[8] H. Cohn, M. Larsen, J. Propp, “The shape of a typical boxed plane partition”, New York J. Math. (electronic), 4 (1998), 137–165 ; http://arxiv.org/abs/math/9801059 | MR | Zbl

[9] B. Eynard, M. L. Mehta, “Matrices coupled in a chain. I. Eigenvalue correlations”, J. Phys. A: Math. Gen., 31:19 (1998), 4449–4456 | DOI | MR | Zbl

[10] I. Gessel, G. Viennot, “Binomial determinants, paths, and hook length formulae”, Adv. Math., 58:3 (1985), 300–321 | DOI | MR | Zbl

[11] K. Johansson, “Non-intersecting, simple, symmetric random walks and the extended Hahn kernel”, Ann. Inst. Fourier (Grenoble), 55:6 (2005), 2129–2145 ; http://arxiv.org/abs/math.PR/0409013 | DOI | MR | Zbl

[12] K. Johansson, E. Nordenstam, “Eigenvalues of GUE minors”, Electron. J. Probab., 11 (2006), no. 50, 1342–1371 ; http://arxiv.org/abs/math/0606760 | DOI | MR

[13] R. Kenyon, Height fluctuations in the honeycomb dimer model

[14] R. Kenyon, A. Okounkov, S. Sheffield, “Dimers and Amoebae”, Ann. of Math., 163:3 (2006), 1019–1056 ; http://arxiv.org/abs/math-ph/0311005 | DOI | MR | Zbl

[15] R. Koekoek, R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its $q$-analogue, http://aw.twi.tudelft.nl/k̃oekoek/reports.html

[16] C. Krattenthaler, “Advanced determinant calculus”, Sém. Lothar. Combin. (electronic), 42, “The Andrews Festschrift” (1999), B42q | MR | Zbl

[17] M. L. Mehta, Random Matrices, 2nd ed., Academic Press, Boston, MA, 1991 | MR | Zbl

[18] A. Okounkov, “Symmetric functions and random partitions”, Symmetric functions 2001: surveys of developments and perspectives, NATO Sci. Ser. II Math. Phys. Chem., 74, Kluwer Acad. Publ., Dordrecht, 2002, 223–252 ; http://arxiv.org/abs/math.CO/0309074 | MR | Zbl

[19] A. Okounkov, N. Reshetikhin, “Correlation functions of Schur process with application to local geometry of a random 3-dimensional Young diagram”, J. Amer. Math. Soc., 16:3 (2003), 581–603 ; http://arxiv.org/abs/math.CO/0107056 | DOI | MR | Zbl

[20] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki. T. 1. Funktsionalnyi analiz, Mir, M., 1977 | MR

[21] S. Sheffield, Random Surfaces, Asterisque, 304, 2005 ; http://arxiv.org/abs/math/0304049 | MR