Quaternion Normed Space with Isometry Group $\mathbb{Z}_2$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 90-92
Cet article a éte moissonné depuis la source Math-Net.Ru
In a finite-dimensional linear space over the quaternion field, we construct a norm with the following property. Any linear isometry is one of the two transformations $x\mapsto x$ and $x\mapsto-x$.
Keywords:
quaternion normed space, isometry.
@article{FAA_2008_42_3_a11,
author = {R. S. Ismagilov and Yu. I. Lyubich},
title = {Quaternion {Normed} {Space} with {Isometry} {Group~}$\mathbb{Z}_2$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {90--92},
year = {2008},
volume = {42},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a11/}
}
R. S. Ismagilov; Yu. I. Lyubich. Quaternion Normed Space with Isometry Group $\mathbb{Z}_2$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 90-92. http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a11/