The Statistics of Particle Trajectories in the Homogeneous Sinai Problem for a Two-Dimensional Lattice
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 10-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we generalize and refine some results by F. P. Boca, R. N. Gologan, and A. Zaharescu on the asymptotic behavior as $h\to 0$ of the statistics of the free path length until the first hit of the $h$-neighborhood (a disk of radius $h$) of a nonzero integer for a particle issuing from the origin. The established facts imply that the limit distribution function for the free path length and for the sighting parameter (the distance from the trajectory to the integer point in question) does not depend on the particle escape direction (the property of isotropy).
Keywords: integer lattice, continued fraction, Kloosterman's sum.
@article{FAA_2008_42_3_a1,
     author = {V. A. Bykovskii and A. V. Ustinov},
     title = {The {Statistics} of {Particle} {Trajectories} in the {Homogeneous} {Sinai} {Problem} for a {Two-Dimensional} {Lattice}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {10--22},
     publisher = {mathdoc},
     volume = {42},
     number = {3},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a1/}
}
TY  - JOUR
AU  - V. A. Bykovskii
AU  - A. V. Ustinov
TI  - The Statistics of Particle Trajectories in the Homogeneous Sinai Problem for a Two-Dimensional Lattice
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 10
EP  - 22
VL  - 42
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a1/
LA  - ru
ID  - FAA_2008_42_3_a1
ER  - 
%0 Journal Article
%A V. A. Bykovskii
%A A. V. Ustinov
%T The Statistics of Particle Trajectories in the Homogeneous Sinai Problem for a Two-Dimensional Lattice
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 10-22
%V 42
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a1/
%G ru
%F FAA_2008_42_3_a1
V. A. Bykovskii; A. V. Ustinov. The Statistics of Particle Trajectories in the Homogeneous Sinai Problem for a Two-Dimensional Lattice. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 3, pp. 10-22. http://geodesic.mathdoc.fr/item/FAA_2008_42_3_a1/

[1] Functional Anal. Appl., 38:2 (2004), 79–8 | DOI | DOI | MR | Zbl

[2] G. Pólya and G. Szegö, Problems and Theorems in Analysis. Part Two, Russian translation from the German original, Nauka, Moscow, 1978 | MR

[3] A. Ya. Khinchin, Continued Fractions, Nauka, Moscow, 1978 (in Russian) | MR

[4] F. P. Boca, R. N. Gologan, and A. Zaharescu, “The statistics of the trajectory of a certain billiard in a flat two-torus”, Comm. Math. Phys., 240:1–2 (2003), 53–73 | DOI | MR | Zbl

[5] T. Estermann, “On Kloosterman's sum”, Mathematika, 8 (1961), 83–86 | DOI | MR | Zbl