A Generalized Khintchine Inequality in Rearrangement Invariant Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 2, pp. 78-81.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X$ be a separable or maximal rearrangement invariant space on $[0,1]$. Necessary and sufficient conditions are found under which the generalized Khintchine inequality \begin{equation*} \bigg\|\sum_{k=1}^\infty f_k\bigg\|_{X}\le C\bigg\|\bigg(\sum_{k=1}^\infty f_k^2\bigg)^{1/2}\bigg\|_X \end{equation*} holds for an arbitrary sequence $\{f_k\}_{k=1}^\infty\subset X$ of mean zero independent variables. Moreover, the subspace spanned in a rearrangement invariant space by the Rademacher system with independent vector coefficients is studied.
Keywords: Khintchine inequality, rearrangement invariant space, Rademacher system, independent functions, Kruglov property, Boyd indices.
@article{FAA_2008_42_2_a9,
     author = {S. V. Astashkin},
     title = {A {Generalized} {Khintchine} {Inequality} in {Rearrangement} {Invariant} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {78--81},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a9/}
}
TY  - JOUR
AU  - S. V. Astashkin
TI  - A Generalized Khintchine Inequality in Rearrangement Invariant Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 78
EP  - 81
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a9/
LA  - ru
ID  - FAA_2008_42_2_a9
ER  - 
%0 Journal Article
%A S. V. Astashkin
%T A Generalized Khintchine Inequality in Rearrangement Invariant Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 78-81
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a9/
%G ru
%F FAA_2008_42_2_a9
S. V. Astashkin. A Generalized Khintchine Inequality in Rearrangement Invariant Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 2, pp. 78-81. http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a9/

[1] A. Khintchine, Math. Z., 18 (1923), 109–116 | DOI | MR | Zbl

[2] G. Peshkir, A. N. Shiryaev, UMN, 50:5 (1995), 3–62 | MR | Zbl

[3] V. A. Rodin, E. M. Semenov, Anal. Math., 1:3 (1975), 207–222 | DOI | MR | Zbl

[4] W. B. Johnson, G. Schechtman, Israel J. Math., 64:3 (1988), 267–275 | DOI | MR

[5] M. Sh. Braverman, Independent Random Variables and Rearrangement Invariant Spaces, Cambridge Univ. Press, Cambridge, 1994 | MR | Zbl

[6] S. G. Krein, Yu. I. Petunin, E. M. Semenov, Interpolyatsiya lineinykh operatorov, Nauka, M., 1978 | MR | Zbl

[7] W. B. Johnson, G. Schechtman, Ann. Probab., 17:2 (1989), 789–808 | DOI | MR | Zbl

[8] J. Lindenstrauss, L. Tzafriri, Classical Banach spaces II. Function spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1979 | MR | Zbl

[9] C. Bennett, R. Sharpley, Interpolation of Operators, Academic Press, Boston, 1988 | MR | Zbl

[10] V. M. Kruglov, TVP, 15:2 (1970), 330–336 | MR | Zbl

[11] S. V. Astashkin, M. Sh. Braverman, Operatornye uravneniya v funktsionalnykh prostranstvakh, Izd-vo VGU, Voronezh, 1986, 3–10 | MR

[12] S. V. Astashkin, F. A. Sukochev, Matem. zametki, 76:4 (2004), 483–489 | DOI | MR | Zbl

[13] S. V. Astashkin, F. A. Sukochev, Israel J. Math., 145 (2005), 125–156 | DOI | MR | Zbl