Quasi-Weyl Asymptotics of the Spectrum of the Vector Dirichlet Problem
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 2, pp. 75-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

In a space of vector functions, we consider the spectral problem $\mu Au=\mathcal{P}u$, $u=u(x)$, where $A=(A_{jk})$, $j,k=1,\dots,n$, $A_{jk}=\sum_\alpha a_{\alpha jk}D^{2\alpha}$, $\mathcal{P}=(p_{jk})$, $A\ge c_0>0$, $\mathcal{P}=\mathcal{P}^*$, the $a_{\alpha jk}$ and $p_{jk}$ are constants, $x\in\Omega$, and $\Omega$ is a bounded open set. The boundary conditions correspond to the Dirichlet problem. Let $N_\pm(\mu)$ be the positive and negative spectral counting functions. We establish the asymptotics $N_\pm(\mu)\sim(\operatorname{mes}_m\Omega)\varphi_\pm(\mu)$ as $\mu\to+0$. The functions $\varphi_\pm(\mu)$ are independent of $\Omega$. In the nonelliptic case, these asymptotics are in general different from the classical (Weyl) asymptotics.
Keywords: quasi-Weyl asymptotics, Dirichlet problem, vector Dirichlet problem, nonelliptic differential operator, Weyl formula, Weyl asymptotics.
@article{FAA_2008_42_2_a8,
     author = {A. S. Andreev},
     title = {Quasi-Weyl {Asymptotics} of the {Spectrum} of the {Vector} {Dirichlet} {Problem}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {75--78},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a8/}
}
TY  - JOUR
AU  - A. S. Andreev
TI  - Quasi-Weyl Asymptotics of the Spectrum of the Vector Dirichlet Problem
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 75
EP  - 78
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a8/
LA  - ru
ID  - FAA_2008_42_2_a8
ER  - 
%0 Journal Article
%A A. S. Andreev
%T Quasi-Weyl Asymptotics of the Spectrum of the Vector Dirichlet Problem
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 75-78
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a8/
%G ru
%F FAA_2008_42_2_a8
A. S. Andreev. Quasi-Weyl Asymptotics of the Spectrum of the Vector Dirichlet Problem. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 2, pp. 75-78. http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a8/

[1] M. Sh. Birman, M. Z. Solomyak, Itogi nauki i tekhniki. Matematicheskii analiz, 14, VINITI, M., 1977, 5–58 | MR

[2] A. S. Andreev, Matem. sb., 197:2 (2006), 17–34 | DOI | MR | Zbl