Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2008_42_2_a6, author = {E. Yu. Smirnov}, title = {Desingularizations of {Schubert} {Varieties} in {Double} {Grassmannians}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {56--67}, publisher = {mathdoc}, volume = {42}, number = {2}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a6/} }
E. Yu. Smirnov. Desingularizations of Schubert Varieties in Double Grassmannians. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 2, pp. 56-67. http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a6/
[1] M. Brion, “On orbit closures of spherical subgroups in flag varieties”, Comment. Math. Helv., 76:2 (2001), 263–299 | DOI | MR | Zbl
[2] M. Brion, “Lectures on the geometry of flag varieties”, Topics in Cohomological Studies of Algebraic Varieties, Trends Math., Birkhäuser, Basel, 2005, 33–85 | DOI | MR
[3] G. Bobiński, G. Zwara, “Schubert varieties and representations of Dynkin quivers”, Colloq. Math., 94:2 (2002), 285–309 | DOI | MR | Zbl
[4] U. Fulton, Tablitsy Yunga i ikh prilozheniya k teorii predstavlenii i geometrii, MTsNMO, M., 2006
[5] F. Knop, “On the set of orbits for a Borel subgroup”, Comment. Math. Helv., 70:2 (1995), 285–309 | DOI | MR | Zbl
[6] L. Manivel, Fonctions symétriques, polynômes de Schubert et lieux de dégénérescence, Cours Spécialisés, 3, Soc. Math. France, Paris, 1998 | MR | Zbl
[7] P. Magyar, J. Weyman, A. Zelevinsky, “Multiple flag varieties of finite type”, Adv. Math., 141:1 (1999), 97–118 | DOI | MR | Zbl
[8] S. Pin, Adhérences d'orbites des sous-groupes de Borel dans les éspaces symétriques, Thèse de doctorat, Institut Fourier, Grenoble, 2001; http://www-fourier.ujf-grenoble.fr/THESE/ps/t107.ps
[9] R. W. Richardson, T. A. Springer, “The Bruhat order on symmetric varieties”, Geom. Dedicata, 35:1–3 (1990), 389–436 | MR | Zbl