Desingularizations of Schubert Varieties in Double Grassmannians
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 2, pp. 56-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $X=\operatorname{Gr}(k,V)\times\operatorname{Gr}(l,V)$ be the direct product of two Grassmann varieties of $k$- and $l$-planes in a finite-dimensional vector space $V$, and let $B\subset\operatorname{GL}(V)$ be the isotropy group of a complete flag in $V$. We consider $B$-orbits in $X$, which are an analog of Schubert cells in Grassmannians. We describe this set of orbits combinatorially and construct desingularizations for the closures of these orbits, similar to the Bott–Samelson desingularizations for Schubert varieties.
Keywords: Grassmannian, spherical variety, desingularization.
@article{FAA_2008_42_2_a6,
     author = {E. Yu. Smirnov},
     title = {Desingularizations of {Schubert} {Varieties} in {Double} {Grassmannians}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {56--67},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a6/}
}
TY  - JOUR
AU  - E. Yu. Smirnov
TI  - Desingularizations of Schubert Varieties in Double Grassmannians
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 56
EP  - 67
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a6/
LA  - ru
ID  - FAA_2008_42_2_a6
ER  - 
%0 Journal Article
%A E. Yu. Smirnov
%T Desingularizations of Schubert Varieties in Double Grassmannians
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 56-67
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a6/
%G ru
%F FAA_2008_42_2_a6
E. Yu. Smirnov. Desingularizations of Schubert Varieties in Double Grassmannians. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 2, pp. 56-67. http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a6/

[1] M. Brion, “On orbit closures of spherical subgroups in flag varieties”, Comment. Math. Helv., 76:2 (2001), 263–299 | DOI | MR | Zbl

[2] M. Brion, “Lectures on the geometry of flag varieties”, Topics in Cohomological Studies of Algebraic Varieties, Trends Math., Birkhäuser, Basel, 2005, 33–85 | DOI | MR

[3] G. Bobiński, G. Zwara, “Schubert varieties and representations of Dynkin quivers”, Colloq. Math., 94:2 (2002), 285–309 | DOI | MR | Zbl

[4] U. Fulton, Tablitsy Yunga i ikh prilozheniya k teorii predstavlenii i geometrii, MTsNMO, M., 2006

[5] F. Knop, “On the set of orbits for a Borel subgroup”, Comment. Math. Helv., 70:2 (1995), 285–309 | DOI | MR | Zbl

[6] L. Manivel, Fonctions symétriques, polynômes de Schubert et lieux de dégénérescence, Cours Spécialisés, 3, Soc. Math. France, Paris, 1998 | MR | Zbl

[7] P. Magyar, J. Weyman, A. Zelevinsky, “Multiple flag varieties of finite type”, Adv. Math., 141:1 (1999), 97–118 | DOI | MR | Zbl

[8] S. Pin, Adhérences d'orbites des sous-groupes de Borel dans les éspaces symétriques, Thèse de doctorat, Institut Fourier, Grenoble, 2001; http://www-fourier.ujf-grenoble.fr/THESE/ps/t107.ps

[9] R. W. Richardson, T. A. Springer, “The Bruhat order on symmetric varieties”, Geom. Dedicata, 35:1–3 (1990), 389–436 | MR | Zbl