Removable Singularities of Solutions of Linear Uniformly Elliptic Second Order Equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 2, pp. 44-55
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $L$ be a uniformly elliptic linear second order differential operator in divergence form with bounded measurable real coefficients in a bounded domain $G\subset\mathbb{R}^n$ ($n\ge 2$). We define classes of continuous functions in $G$ that contain generalized solutions of the equation $Lf=0$ and have the property that the compact sets removable for such solutions in these classes can be completely described in terms of Hausdorff measures.
Keywords:
removable singularity, elliptic operator, generalized solution, Green function, Hausdorff measure.
@article{FAA_2008_42_2_a5,
author = {A. V. Pokrovskii},
title = {Removable {Singularities} of {Solutions} of {Linear} {Uniformly} {Elliptic} {Second} {Order} {Equations}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {44--55},
publisher = {mathdoc},
volume = {42},
number = {2},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a5/}
}
TY - JOUR AU - A. V. Pokrovskii TI - Removable Singularities of Solutions of Linear Uniformly Elliptic Second Order Equations JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2008 SP - 44 EP - 55 VL - 42 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a5/ LA - ru ID - FAA_2008_42_2_a5 ER -
A. V. Pokrovskii. Removable Singularities of Solutions of Linear Uniformly Elliptic Second Order Equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 2, pp. 44-55. http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a5/