Removable Singularities of Solutions of Linear Uniformly Elliptic Second Order Equations
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 2, pp. 44-55.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $L$ be a uniformly elliptic linear second order differential operator in divergence form with bounded measurable real coefficients in a bounded domain $G\subset\mathbb{R}^n$ ($n\ge 2$). We define classes of continuous functions in $G$ that contain generalized solutions of the equation $Lf=0$ and have the property that the compact sets removable for such solutions in these classes can be completely described in terms of Hausdorff measures.
Keywords: removable singularity, elliptic operator, generalized solution, Green function, Hausdorff measure.
@article{FAA_2008_42_2_a5,
     author = {A. V. Pokrovskii},
     title = {Removable {Singularities} of {Solutions} of {Linear} {Uniformly} {Elliptic} {Second} {Order} {Equations}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {44--55},
     publisher = {mathdoc},
     volume = {42},
     number = {2},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a5/}
}
TY  - JOUR
AU  - A. V. Pokrovskii
TI  - Removable Singularities of Solutions of Linear Uniformly Elliptic Second Order Equations
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 44
EP  - 55
VL  - 42
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a5/
LA  - ru
ID  - FAA_2008_42_2_a5
ER  - 
%0 Journal Article
%A A. V. Pokrovskii
%T Removable Singularities of Solutions of Linear Uniformly Elliptic Second Order Equations
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 44-55
%V 42
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a5/
%G ru
%F FAA_2008_42_2_a5
A. V. Pokrovskii. Removable Singularities of Solutions of Linear Uniformly Elliptic Second Order Equations. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 2, pp. 44-55. http://geodesic.mathdoc.fr/item/FAA_2008_42_2_a5/

[1] E. M. Landis, Uravneniya vtorogo poryadka ellipticheskogo i parabolicheskogo tipa, Nauka, M., 1971 | MR | Zbl

[2] D. Gilbarg, N. Trudinger, Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR | Zbl

[3] M. Grüter, K.-O. Widman, “The Green function for uniformly elliptic equations”, Manuscripta Math., 37 (1982), 303–342 | DOI | MR | Zbl

[4] E. P. Dolzhenko, “O «stiranii» osobennostei analiticheskikh funktsii”, UMN, 18:4 (112) (1963), 135–142 | MR | Zbl

[5] L. Carleson, “Removable singularities for continuous harmonic functions in $\mathbb{R}^n$”, Math. Scand., 12 (1963), 15–18 | DOI | MR | Zbl

[6] E. P. Dolzhenko, “O predstavlenii nepreryvnykh garmonicheskikh funktsii v vide potentsialov”, Izv. AN SSSR, ser. matem., 28:5 (1964), 1113–1130 | Zbl

[7] E. P. Dolzhenko, “Ob osobykh tochkakh nepreryvnykh garmonicheskikh funktsii”, Izv. AN SSSR, ser. matem., 28:6 (1964), 1251–1270 | Zbl

[8] L. Karleson, Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 | MR | Zbl

[9] R. Harvey, J. C. Polking, “Removable singularities of solutions of linear partial differential equations”, Acta Math., 125:1/2 (1970), 39–56 | DOI | MR | Zbl

[10] J. Kral, “Semielliptic singularities”, Časopis Pěst. Mat., 109 (1984), 304–322 | MR | Zbl

[11] B. Zh. Ischanov, “O predstavlenii reshenii nekotorykh klassov uravnenii v vide potentsialov mer, raspredelennykh na mnozhestve osobennostei etikh reshenii”, Dokl. RAN, 358:4 (1998), 455–458 | MR | Zbl

[12] J. Mateu, J. Orobitg, “Lipschitz approximations by harmonic function”, Indiana Univ. Math. J., 39:3 (1990), 703–736 | DOI | MR | Zbl

[13] D. C. Ullrich, “Removable sets for harmonic functions”, Mich. Math. J., 38:3 (1991), 467–473 | DOI | MR | Zbl

[14] N. N. Tarkhanov, Ryad Lorana dlya reshenii ellipticheskikh sistem, Nauka, Novosibirsk, 1991 | MR | Zbl

[15] G. David, P. Mattila, “Removable sets for Lipschitz harmonic functions in the plane”, Rev. Mat. Iberoamericana, 16 (2000), 137–215 | DOI | MR | Zbl

[16] A. V. Pokrovskii, “Lokalnye approksimatsii resheniyami gipoellipticheskikh uravnenii i ustranimye osobennosti”, Dokl. RAN, 367:1 (1999), 15–17 | MR | Zbl

[17] T. Kilpeläinen, X. Zhong, “Removable sets for continuous solutions of quasilinear elliptic equations”, Proc. Amer. Math. Soc., 130:6 (2002), 1681–1688 (electronic) | DOI | MR | Zbl

[18] A. V. Pokrovskii, “Ustranimye osobennosti $p$-garmonicheskikh funktsii”, Differentsialnye uravneniya, 41:7 (2005), 897–907 | MR | Zbl

[19] A. V. Pokrovskii, “Ustranimye osobennosti reshenii uravneniya minimalnykh poverkhnostei”, Funkts. analiz i ego pril., 39:4 (2005), 62–68 | DOI | MR | Zbl

[20] V. S. Fedorov, “Sur la representatione des fonctions analitiques au voisinage d'un ensemble de ses points singuliers”, Matem. sb., 35 (1928), 237–250

[21] A. V. Pokrovskii, “Ustranimye osobennosti reshenii divergentnykh ellipticheskikh uravnenii vtorogo poryadka”, Matem. zametki, 77:3 (2005), 424–433 | DOI | MR | Zbl

[22] A. V. Pokrovskii, “Klassy funktsii, opredelyaemye s pomoschyu lokalnykh priblizhenii resheniyami gipoellipticheskikh uravnenii”, Sib. matem. zhurn., 47:2 (2006), 394–413 | MR | Zbl

[23] V. A. Kondratev, E. M. Landis, “Kachestvennaya teoriya lineinykh differentsialnykh uravnenii v chastnykh proizvodnykh vtorogo poryadka”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 32, VINITI, M., 1988, 99–215 | MR

[24] L. A. Caffarelli, E. B. Fabes, C. E. Kenig, “Completeli singular elliptic-harmonic measures”, Indiana Univ. Math. J., 30:6 (1981), 917–924 | DOI | MR | Zbl

[25] W. Littman, G. Stampacchia, H. F. Weinberger, “Regular points for elliptic equations with discontinuous coefficients”, Ann. Scuola Norm. Super. Pisa (III), 17 (1963), 43–77 | MR | Zbl

[26] M. Giaquinta, Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Princeton Univ. Press, Princeton, 1983 | MR | Zbl