On Characteristic Classes of $Q$-manifolds
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 88-91.

Voir la notice de l'article provenant de la source Math-Net.Ru

Characteristic classes are defined for supermanifolds equipped with a homological vector field $Q$. We construct an infinite series of characteristic classes defined in terms of the second covariant derivatives of $Q$.
Keywords: homological vector field, $Q$-manifold, characteristic class.
@article{FAA_2008_42_1_a9,
     author = {S. L. Lyakhovich and E. A. Mosman and A. A. Sharapov},
     title = {On {Characteristic} {Classes} of $Q$-manifolds},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {88--91},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a9/}
}
TY  - JOUR
AU  - S. L. Lyakhovich
AU  - E. A. Mosman
AU  - A. A. Sharapov
TI  - On Characteristic Classes of $Q$-manifolds
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 88
EP  - 91
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a9/
LA  - ru
ID  - FAA_2008_42_1_a9
ER  - 
%0 Journal Article
%A S. L. Lyakhovich
%A E. A. Mosman
%A A. A. Sharapov
%T On Characteristic Classes of $Q$-manifolds
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 88-91
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a9/
%G ru
%F FAA_2008_42_1_a9
S. L. Lyakhovich; E. A. Mosman; A. A. Sharapov. On Characteristic Classes of $Q$-manifolds. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 88-91. http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a9/

[1] A. Yu. Vaintrob, UMN, 52:2 (1997), 161–162 | DOI | MR | Zbl

[2] A. A. Voronov, Yu. I. Manin, I. B. Penkov, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Noveishie dostizheniya, 32, VINITI, M., 1988, 3–25 | MR

[3] R. L. Fernandes, Adv. Math., 170:1 (2002), 119–179 | DOI | MR | Zbl

[4] S. L. Lyakhovich, A. A. Sharapov, Nucl. Phys. B, 703 (2004), 419–453 | DOI | MR | Zbl

[5] A. S. Schwarz, Comm. Math. Phys., 158 (1993), 373–396 | DOI | MR