Invariant Ordering on the Simply Connected Covering of the Shilov Boundary of a Symmetric Domain
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 33-38
Voir la notice de l'article provenant de la source Math-Net.Ru
The Shilov boundary of a symmetric domain $D=G/K$ of tube type has the form $G/P$, where $P$ is a maximal parabolic subgroup of the group $G$. We prove that the simply connected covering of the Shilov boundary possesses a unique (up to inversion) invariant ordering, which is induced by the continuous invariant ordering on the simply connected covering of $G$ and can readily be described in terms of the corresponding Jordan algebra.
Mots-clés :
invariant cone
Keywords: invariant ordering, Lie semigroup.
Keywords: invariant ordering, Lie semigroup.
@article{FAA_2008_42_1_a2,
author = {A. L. Konstantinov},
title = {Invariant {Ordering} on the {Simply} {Connected} {Covering} of the {Shilov} {Boundary} of a {Symmetric} {Domain}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {33--38},
publisher = {mathdoc},
volume = {42},
number = {1},
year = {2008},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a2/}
}
TY - JOUR AU - A. L. Konstantinov TI - Invariant Ordering on the Simply Connected Covering of the Shilov Boundary of a Symmetric Domain JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2008 SP - 33 EP - 38 VL - 42 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a2/ LA - ru ID - FAA_2008_42_1_a2 ER -
%0 Journal Article %A A. L. Konstantinov %T Invariant Ordering on the Simply Connected Covering of the Shilov Boundary of a Symmetric Domain %J Funkcionalʹnyj analiz i ego priloženiâ %D 2008 %P 33-38 %V 42 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a2/ %G ru %F FAA_2008_42_1_a2
A. L. Konstantinov. Invariant Ordering on the Simply Connected Covering of the Shilov Boundary of a Symmetric Domain. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 33-38. http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a2/