Keywords: invariant ordering, Lie semigroup.
@article{FAA_2008_42_1_a2,
author = {A. L. Konstantinov},
title = {Invariant {Ordering} on the {Simply} {Connected} {Covering} of the {Shilov} {Boundary} of a {Symmetric} {Domain}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {33--38},
year = {2008},
volume = {42},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a2/}
}
TY - JOUR AU - A. L. Konstantinov TI - Invariant Ordering on the Simply Connected Covering of the Shilov Boundary of a Symmetric Domain JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2008 SP - 33 EP - 38 VL - 42 IS - 1 UR - http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a2/ LA - ru ID - FAA_2008_42_1_a2 ER -
A. L. Konstantinov. Invariant Ordering on the Simply Connected Covering of the Shilov Boundary of a Symmetric Domain. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 33-38. http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a2/
[1] E. B. Vinberg, “Invariantnye vypuklye konusy i uporyadocheniya v gruppakh Li”, Funkts. analiz i ego pril., 14:1 (1980), 1–13 | MR | Zbl
[2] G. I. Olshanskii, “Vypuklye konusy v simmetricheskikh algebrakh Li, polugruppy Li i invariantnye prichinnye struktury (uporyadocheniya) na psevdorimanovykh simmetricheskikh prostranstvakh”, DAN SSSR, 265:3 (1982), 537–541 | MR
[3] A. L. Konstantinov, “Invariantnye uporyadocheniya v odnorodnykh prostranstvakh prostykh grupp Li”, Vestn. Mosk. un-ta, ser. 1, matem., mekh., 2006, no. 6, 15–18
[4] G. I. Olshanskii, “Invariantnye uporyadocheniya v prostykh gruppakh Li. Reshenie zadachi E. B. Vinberga”, Funkts. analiz i ego pril., 16:4 (1982), 80–81 | MR | Zbl
[5] I. E. Segal, Mathematical Cosmology and Extragalactic Astronomy, Academic Press, New York, 1976 | MR
[6] S. Paneitz, “Invariant convex cones and causality in semisimple Lie algebras and groups”, J. Funct. Anal, 43 (1981), 313–359 | DOI | MR | Zbl
[7] J. Faraut, A. Koranyi, Analysis on Symmetric Cones, Oxford Mathematical Monographs, Oxford University Press, 1994 | MR | Zbl