Invariant Ordering on the Simply Connected Covering of the Shilov Boundary of a Symmetric Domain
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 33-38.

Voir la notice de l'article provenant de la source Math-Net.Ru

The Shilov boundary of a symmetric domain $D=G/K$ of tube type has the form $G/P$, where $P$ is a maximal parabolic subgroup of the group $G$. We prove that the simply connected covering of the Shilov boundary possesses a unique (up to inversion) invariant ordering, which is induced by the continuous invariant ordering on the simply connected covering of $G$ and can readily be described in terms of the corresponding Jordan algebra.
Mots-clés : invariant cone
Keywords: invariant ordering, Lie semigroup.
@article{FAA_2008_42_1_a2,
     author = {A. L. Konstantinov},
     title = {Invariant {Ordering} on the {Simply} {Connected} {Covering} of the {Shilov} {Boundary} of a {Symmetric} {Domain}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {33--38},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a2/}
}
TY  - JOUR
AU  - A. L. Konstantinov
TI  - Invariant Ordering on the Simply Connected Covering of the Shilov Boundary of a Symmetric Domain
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 33
EP  - 38
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a2/
LA  - ru
ID  - FAA_2008_42_1_a2
ER  - 
%0 Journal Article
%A A. L. Konstantinov
%T Invariant Ordering on the Simply Connected Covering of the Shilov Boundary of a Symmetric Domain
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 33-38
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a2/
%G ru
%F FAA_2008_42_1_a2
A. L. Konstantinov. Invariant Ordering on the Simply Connected Covering of the Shilov Boundary of a Symmetric Domain. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 33-38. http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a2/

[1] E. B. Vinberg, “Invariantnye vypuklye konusy i uporyadocheniya v gruppakh Li”, Funkts. analiz i ego pril., 14:1 (1980), 1–13 | MR | Zbl

[2] G. I. Olshanskii, “Vypuklye konusy v simmetricheskikh algebrakh Li, polugruppy Li i invariantnye prichinnye struktury (uporyadocheniya) na psevdorimanovykh simmetricheskikh prostranstvakh”, DAN SSSR, 265:3 (1982), 537–541 | MR

[3] A. L. Konstantinov, “Invariantnye uporyadocheniya v odnorodnykh prostranstvakh prostykh grupp Li”, Vestn. Mosk. un-ta, ser. 1, matem., mekh., 2006, no. 6, 15–18

[4] G. I. Olshanskii, “Invariantnye uporyadocheniya v prostykh gruppakh Li. Reshenie zadachi E. B. Vinberga”, Funkts. analiz i ego pril., 16:4 (1982), 80–81 | MR | Zbl

[5] I. E. Segal, Mathematical Cosmology and Extragalactic Astronomy, Academic Press, New York, 1976 | MR

[6] S. Paneitz, “Invariant convex cones and causality in semisimple Lie algebras and groups”, J. Funct. Anal, 43 (1981), 313–359 | DOI | MR | Zbl

[7] J. Faraut, A. Koranyi, Analysis on Symmetric Cones, Oxford Mathematical Monographs, Oxford University Press, 1994 | MR | Zbl