Topological Recursion Relation for $\psi_1\psi_2$ in $\overline{\mathcal{M}}_{2,2}$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 91-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

We give the definition of the full potential with descendants, which is a genus expansion of the Barannikov–Kontsevich solution of the WDVV equation. This potential satisfies the Getzler relation, which comes from the geometry of the moduli space of curves $\overline{\mathcal{M}}_{2,2}$.
Keywords: WDVV equation, tautological relations.
@article{FAA_2008_42_1_a10,
     author = {I. I. Shneiberg},
     title = {Topological {Recursion} {Relation} for $\psi_1\psi_2$ in $\overline{\mathcal{M}}_{2,2}$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {91--94},
     publisher = {mathdoc},
     volume = {42},
     number = {1},
     year = {2008},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a10/}
}
TY  - JOUR
AU  - I. I. Shneiberg
TI  - Topological Recursion Relation for $\psi_1\psi_2$ in $\overline{\mathcal{M}}_{2,2}$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2008
SP  - 91
EP  - 94
VL  - 42
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a10/
LA  - ru
ID  - FAA_2008_42_1_a10
ER  - 
%0 Journal Article
%A I. I. Shneiberg
%T Topological Recursion Relation for $\psi_1\psi_2$ in $\overline{\mathcal{M}}_{2,2}$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2008
%P 91-94
%V 42
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a10/
%G ru
%F FAA_2008_42_1_a10
I. I. Shneiberg. Topological Recursion Relation for $\psi_1\psi_2$ in $\overline{\mathcal{M}}_{2,2}$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 91-94. http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a10/

[1] S. Barannikov, M. Kontsevich, Internat. Math. Res. Notices, 4 (1998), 201–215 | DOI | MR | Zbl

[2] E. Getzler, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), World Sci. Publishing, River Edge, NJ, 1998, 73–106 | MR | Zbl

[3] M. Kontsevich, Y. Manin, Comm. Math. Phys., 164:3 (1994), 525–562 | DOI | MR | Zbl

[4] Yu. I. Manin, Frobeniusovy mnogoobraziya, kvantovye kogomologii i prostranstva modulei, Izd-vo «Faktorial Press», M., 2002

[5] A. Losev, S. Shadrin, http://xxx.arxiv.org/math.QA/0506039

[6] A. Losev, S. Shadrin, I. Shneiberg, Nuclear Phys. B, 786 (2007), 267–296 | DOI | MR | Zbl

[7] S. Shadrin, http://xxx.arxiv.org/abs/math/0507106

[8] S. Shadrin, I. Shneiberg, J. Geom. Phys., 57:2 (2007), 597–615 | DOI | MR | Zbl