Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2008_42_1_a10, author = {I. I. Shneiberg}, title = {Topological {Recursion} {Relation} for $\psi_1\psi_2$ in $\overline{\mathcal{M}}_{2,2}$}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {91--94}, publisher = {mathdoc}, volume = {42}, number = {1}, year = {2008}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a10/} }
TY - JOUR AU - I. I. Shneiberg TI - Topological Recursion Relation for $\psi_1\psi_2$ in $\overline{\mathcal{M}}_{2,2}$ JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2008 SP - 91 EP - 94 VL - 42 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a10/ LA - ru ID - FAA_2008_42_1_a10 ER -
I. I. Shneiberg. Topological Recursion Relation for $\psi_1\psi_2$ in $\overline{\mathcal{M}}_{2,2}$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 91-94. http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a10/
[1] S. Barannikov, M. Kontsevich, Internat. Math. Res. Notices, 4 (1998), 201–215 | DOI | MR | Zbl
[2] E. Getzler, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), World Sci. Publishing, River Edge, NJ, 1998, 73–106 | MR | Zbl
[3] M. Kontsevich, Y. Manin, Comm. Math. Phys., 164:3 (1994), 525–562 | DOI | MR | Zbl
[4] Yu. I. Manin, Frobeniusovy mnogoobraziya, kvantovye kogomologii i prostranstva modulei, Izd-vo «Faktorial Press», M., 2002
[5] A. Losev, S. Shadrin, http://xxx.arxiv.org/math.QA/0506039
[6] A. Losev, S. Shadrin, I. Shneiberg, Nuclear Phys. B, 786 (2007), 267–296 | DOI | MR | Zbl
[7] S. Shadrin, http://xxx.arxiv.org/abs/math/0507106
[8] S. Shadrin, I. Shneiberg, J. Geom. Phys., 57:2 (2007), 597–615 | DOI | MR | Zbl