Topological Recursion Relation for $\psi_1\psi_2$ in $\overline{\mathcal{M}}_{2,2}$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 91-94
Cet article a éte moissonné depuis la source Math-Net.Ru
We give the definition of the full potential with descendants, which is a genus expansion of the Barannikov–Kontsevich solution of the WDVV equation. This potential satisfies the Getzler relation, which comes from the geometry of the moduli space of curves $\overline{\mathcal{M}}_{2,2}$.
Keywords:
WDVV equation, tautological relations.
@article{FAA_2008_42_1_a10,
author = {I. I. Shneiberg},
title = {Topological {Recursion} {Relation} for $\psi_1\psi_2$ in $\overline{\mathcal{M}}_{2,2}$},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {91--94},
year = {2008},
volume = {42},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a10/}
}
I. I. Shneiberg. Topological Recursion Relation for $\psi_1\psi_2$ in $\overline{\mathcal{M}}_{2,2}$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 42 (2008) no. 1, pp. 91-94. http://geodesic.mathdoc.fr/item/FAA_2008_42_1_a10/
[1] S. Barannikov, M. Kontsevich, Internat. Math. Res. Notices, 4 (1998), 201–215 | DOI | MR | Zbl
[2] E. Getzler, Integrable systems and algebraic geometry (Kobe/Kyoto, 1997), World Sci. Publishing, River Edge, NJ, 1998, 73–106 | MR | Zbl
[3] M. Kontsevich, Y. Manin, Comm. Math. Phys., 164:3 (1994), 525–562 | DOI | MR | Zbl
[4] Yu. I. Manin, Frobeniusovy mnogoobraziya, kvantovye kogomologii i prostranstva modulei, Izd-vo «Faktorial Press», M., 2002
[5] A. Losev, S. Shadrin, http://xxx.arxiv.org/math.QA/0506039
[6] A. Losev, S. Shadrin, I. Shneiberg, Nuclear Phys. B, 786 (2007), 267–296 | DOI | MR | Zbl
[7] S. Shadrin, http://xxx.arxiv.org/abs/math/0507106
[8] S. Shadrin, I. Shneiberg, J. Geom. Phys., 57:2 (2007), 597–615 | DOI | MR | Zbl