Euler Characteristic of Fredholm Quasicomplexes
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 87-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

By quasicomplexes are usually meant perturbations of complexes small in some sense. Of interest are not only perturbations within the category of complexes but also those going beyond this category. A sequence perturbed in this way is no longer a complex, and so it bears no cohomology. We show how to introduce Euler characteristic for small perturbations of Fredholm complexes.
Keywords: essential complexes, Fredholm complexes, Euler characteristic.
@article{FAA_2007_41_4_a9,
     author = {N. N. Tarkhanov},
     title = {Euler {Characteristic} of {Fredholm} {Quasicomplexes}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {87--93},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a9/}
}
TY  - JOUR
AU  - N. N. Tarkhanov
TI  - Euler Characteristic of Fredholm Quasicomplexes
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 87
EP  - 93
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a9/
LA  - ru
ID  - FAA_2007_41_4_a9
ER  - 
%0 Journal Article
%A N. N. Tarkhanov
%T Euler Characteristic of Fredholm Quasicomplexes
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 87-93
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a9/
%G ru
%F FAA_2007_41_4_a9
N. N. Tarkhanov. Euler Characteristic of Fredholm Quasicomplexes. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 87-93. http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a9/

[1] B. V. Fedosov, “Teoremy ob indekse”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 65, VINITI, M., 1991, 165–268 | MR

[2] A. S. Mischenko, Trudy MIRAN, 231 (2000), 281–307 | Zbl

[3] M. Putinar, J. Operator Theory, 8 (1982), 65–90 | MR | Zbl

[4] B.-W. Schulze, N. Tarkhanov, Evolution Equations, Feshbach Resonances, Singular Hodge Theory, Math. Top., 16, Wiley-VCH, Berlin, 1999, 287–431 | MR | Zbl

[5] N. Tarkhanov, Complexes of Differential Operators, Kluwer Academic Publishers, Dordrecht, NL, 1995 | MR | Zbl