Euler Characteristic of Fredholm Quasicomplexes
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 87-93
Cet article a éte moissonné depuis la source Math-Net.Ru
By quasicomplexes are usually meant perturbations of complexes small in some sense. Of interest are not only perturbations within the category of complexes but also those going beyond this category. A sequence perturbed in this way is no longer a complex, and so it bears no cohomology. We show how to introduce Euler characteristic for small perturbations of Fredholm complexes.
Keywords:
essential complexes, Fredholm complexes, Euler characteristic.
@article{FAA_2007_41_4_a9,
author = {N. N. Tarkhanov},
title = {Euler {Characteristic} of {Fredholm} {Quasicomplexes}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {87--93},
year = {2007},
volume = {41},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a9/}
}
N. N. Tarkhanov. Euler Characteristic of Fredholm Quasicomplexes. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 87-93. http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a9/
[1] B. V. Fedosov, “Teoremy ob indekse”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 65, VINITI, M., 1991, 165–268 | MR
[2] A. S. Mischenko, Trudy MIRAN, 231 (2000), 281–307 | Zbl
[3] M. Putinar, J. Operator Theory, 8 (1982), 65–90 | MR | Zbl
[4] B.-W. Schulze, N. Tarkhanov, Evolution Equations, Feshbach Resonances, Singular Hodge Theory, Math. Top., 16, Wiley-VCH, Berlin, 1999, 287–431 | MR | Zbl
[5] N. Tarkhanov, Complexes of Differential Operators, Kluwer Academic Publishers, Dordrecht, NL, 1995 | MR | Zbl