Euler Characteristic of Fredholm Quasicomplexes
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 87-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

By quasicomplexes are usually meant perturbations of complexes small in some sense. Of interest are not only perturbations within the category of complexes but also those going beyond this category. A sequence perturbed in this way is no longer a complex, and so it bears no cohomology. We show how to introduce Euler characteristic for small perturbations of Fredholm complexes.
Keywords: essential complexes, Fredholm complexes, Euler characteristic.
@article{FAA_2007_41_4_a9,
     author = {N. N. Tarkhanov},
     title = {Euler {Characteristic} of {Fredholm} {Quasicomplexes}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {87--93},
     year = {2007},
     volume = {41},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a9/}
}
TY  - JOUR
AU  - N. N. Tarkhanov
TI  - Euler Characteristic of Fredholm Quasicomplexes
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 87
EP  - 93
VL  - 41
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a9/
LA  - ru
ID  - FAA_2007_41_4_a9
ER  - 
%0 Journal Article
%A N. N. Tarkhanov
%T Euler Characteristic of Fredholm Quasicomplexes
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 87-93
%V 41
%N 4
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a9/
%G ru
%F FAA_2007_41_4_a9
N. N. Tarkhanov. Euler Characteristic of Fredholm Quasicomplexes. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 87-93. http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a9/

[1] B. V. Fedosov, “Teoremy ob indekse”, Itogi nauki i tekhniki. Sovremennye problemy matematiki. Fundamentalnye napravleniya, 65, VINITI, M., 1991, 165–268 | MR

[2] A. S. Mischenko, Trudy MIRAN, 231 (2000), 281–307 | Zbl

[3] M. Putinar, J. Operator Theory, 8 (1982), 65–90 | MR | Zbl

[4] B.-W. Schulze, N. Tarkhanov, Evolution Equations, Feshbach Resonances, Singular Hodge Theory, Math. Top., 16, Wiley-VCH, Berlin, 1999, 287–431 | MR | Zbl

[5] N. Tarkhanov, Complexes of Differential Operators, Kluwer Academic Publishers, Dordrecht, NL, 1995 | MR | Zbl