On Strictly Weakly Mixing $C^*$-Dynamical Systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 79-82.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider strictly ergodic and strictly weakly mixing $C^*$-dynamical systems. We establish that a system is strictly weakly mixing if and only if its tensor product is strictly ergodic and strictly weakly mixing. We also investigate some weighted uniform ergodic theorem with respect to $S$-Besicovitch sequences for strictly weakly mixing dynamical systems.
Keywords: strict ergodicity, strictly weak mixing, $C^*$-dynamical system, $S$-Besicovitch sequence.
@article{FAA_2007_41_4_a7,
     author = {F. M. Mukhamedov},
     title = {On {Strictly} {Weakly} {Mixing} $C^*${-Dynamical} {Systems}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {79--82},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a7/}
}
TY  - JOUR
AU  - F. M. Mukhamedov
TI  - On Strictly Weakly Mixing $C^*$-Dynamical Systems
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 79
EP  - 82
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a7/
LA  - ru
ID  - FAA_2007_41_4_a7
ER  - 
%0 Journal Article
%A F. M. Mukhamedov
%T On Strictly Weakly Mixing $C^*$-Dynamical Systems
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 79-82
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a7/
%G ru
%F FAA_2007_41_4_a7
F. M. Mukhamedov. On Strictly Weakly Mixing $C^*$-Dynamical Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 79-82. http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a7/

[1] J. Aaronson, M. Lin, B. Weiss, Israel J. Math., 33:3–4 (1979), 198–224 | DOI | MR | Zbl

[2] L. Accardi, F. Fidaleo, Ann. Mat. Pura Appl., 184:3 (2005), 327–346 | DOI | MR | Zbl

[3] D. Berend, M. Lin, J. Rosenblatt, A. Tempelman, Ergodic Theory Dynam. Systems, 22 (2002), 1653–1665 | DOI | MR | Zbl

[4] R. Bowen, Israel J. Math., 23:3–4 (1976), 267–273 | DOI | MR | Zbl

[5] R. Carbone, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 7:3 (2004), 317–335 | DOI | MR | Zbl

[6] C. Cuny, J. Theoret. Probab., 16:4 (2004), 923–933 | DOI | MR

[7] R. L. Jones, M. Lin, J. Olsen, Proceedings of the New York Journal of Mathematics Conference, June 9–13, New York J. Math., 3A, 1997, 89–98 | MR

[8] H. O. Krengel, Ergodic Theorems, Walter de Gruyter, Berlin–New York, 1985 | MR | Zbl

[9] I. P. Kornefeld, Ya. G. Sinai, S. V. Fomin, Ergodicheskaya teoriya, Nauka, M., 1980 | MR

[10] C. Nicolescu, A. Ströh, L. Zsidó, J. Operator Theory, 50 (2003), 3–52 | MR

[11] M. Takesaki, Theory of Operator Algebras, I, Springer-Verlag, Berlin–Heidelberg–New York, 1979 | MR

[12] S. Watanabe, J. Math. Anal. Appl., 86:2 (1982), 411–424 | DOI | MR | Zbl