The Representation Theorem for Local Operator Spaces
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 73-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this note we propose a representation theorem for local operator spaces which extends Ruan's representation theorem for operator spaces, and Arveson–Hahn–Banach–Webster theorem for local operator systems. Further, we investigate the decomposition property of a complete contraction from a unital multinormed $C^*$-algebra into a local operator system as a product of contractions and unital contractive $*$-representation, and the injectivity in both local operator space and local operator system contexts.
Keywords: local operator space, local operator system, multinormed $C^*$-algebra.
@article{FAA_2007_41_4_a6,
     author = {A. A. Dosiev},
     title = {The {Representation} {Theorem} for {Local} {Operator} {Spaces}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {73--78},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a6/}
}
TY  - JOUR
AU  - A. A. Dosiev
TI  - The Representation Theorem for Local Operator Spaces
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 73
EP  - 78
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a6/
LA  - ru
ID  - FAA_2007_41_4_a6
ER  - 
%0 Journal Article
%A A. A. Dosiev
%T The Representation Theorem for Local Operator Spaces
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 73-78
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a6/
%G ru
%F FAA_2007_41_4_a6
A. A. Dosiev. The Representation Theorem for Local Operator Spaces. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 73-78. http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a6/

[1] A. A. Dosiev, J. Funct. Anal., 230 (2006), 446–493 | DOI | MR | Zbl

[2] M. D. Choi, E. G. Efros, J. Funct. Anal., 24:2 (1977), 156–209 | DOI | MR | Zbl

[3] E. G. Effros, Z.-J. Ruan, Operator Spaces, London Math. Soc., Clarendon Press, Oxford, 2000 | MR | Zbl

[4] E. G. Effros, C. Webster, Operator Algebras and Applications (Samos 1996), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 495, Kluwer, Dordrecht, 1997, 163–207 | MR | Zbl

[5] A. Grothendieck, Topological Vector Spaces, Notes on Math. and Its Appl., Gordon and Breach, London, 1972 | MR

[6] A. Ya. Khelemskii, Banakhovy i polinormirovannye algebry: obschaya teoriya, predstavleniya, gomologii, Nauka, M., 1989 | MR

[7] G. Lassner, Math. Nachr., 52 (1972), 161–166 | DOI | MR | Zbl

[8] C. Webster, Local Operator Spaces and Applications, Ph. D., University of California, Los Angeles, 1997 | MR