Derivations of Noncommutative Arens Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 70-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The present paper deals with derivations of noncommutative Arens algebras. We prove that every derivation of an Arens algebra associated with a von Neumann algebra and a faithful normal finite trace is inner. In particular, each derivation on such algebras is automatically continuous in the natural topology, and in the commutative case, even for semi-finite traces, all derivations are identically zero. At the same time, the existence of noninner derivations is proved for noncommutative Arens algebras with a semi-finite but nonfinite trace.
Keywords: von Neumann algebra, finite trace, Arens algebra, derivation, inner derivation.
@article{FAA_2007_41_4_a5,
     author = {Sh. A. Ayupov and K. K. Kudaibergenov},
     title = {Derivations of {Noncommutative} {Arens} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {70--72},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a5/}
}
TY  - JOUR
AU  - Sh. A. Ayupov
AU  - K. K. Kudaibergenov
TI  - Derivations of Noncommutative Arens Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 70
EP  - 72
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a5/
LA  - ru
ID  - FAA_2007_41_4_a5
ER  - 
%0 Journal Article
%A Sh. A. Ayupov
%A K. K. Kudaibergenov
%T Derivations of Noncommutative Arens Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 70-72
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a5/
%G ru
%F FAA_2007_41_4_a5
Sh. A. Ayupov; K. K. Kudaibergenov. Derivations of Noncommutative Arens Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 70-72. http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a5/

[1] S. Sakai, Operator Algebras in Dynamical Systems, Encycl. Math., 41, Cambridge University Press, Cambridge, 1991 | MR | Zbl

[2] H. G. Dales, Banach Algebras and Automatic Continuity, London Math. Sci. Monographs, 24, Clarendon Press, Oxford, 2000 | MR | Zbl

[3] Sh. A. Ayupov, Abstracts of the International Conference “Operators Algebras and Quantum Probability” (Tashkent, 2005), 38–42 | MR

[4] A. F. Ber, F. A. Sukochev, V. I. Chilin, Matem. zametki, 75:3 (2004), 453–457 | DOI | MR

[5] A. G. Kusraev, Sib. matem. zh., 47:1 (2006), 97–107 | MR | Zbl

[6] R. Arens, Bull. Amer. Math. Soc., 52 (1946), 931–935 | DOI | MR | Zbl

[7] A. Inoue, Pacific J. Math., 66:2 (1976), 411–431 | DOI | MR | Zbl

[8] R. Z. Abdullaev, Uzbek. matem. zh., 2 (1997), 3–7 | MR | Zbl

[9] J. R. Ringrose, J. London Math. Soc., 5 (1972), 432–438 | DOI | MR | Zbl