Lax Operator Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 46-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we develop a general concept of Lax operators on algebraic curves introduced in [I. M. Krichever, Comm. Math. Phys., 229, 2 (2002), 229–269]. We observe that the space of Lax operators is closed with respect to their usual multiplication as matrix-valued functions. We construct the orthogonal and symplectic analogs of Lax operators, prove that they constitute almost graded Lie algebras and construct local central extensions of those Lie algebras.
Keywords: Lax operators, current algebras, Tyurin data, almost graded structure, local central extension.
@article{FAA_2007_41_4_a3,
     author = {I. M. Krichever and O. K. Sheinman},
     title = {Lax {Operator} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {46--59},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a3/}
}
TY  - JOUR
AU  - I. M. Krichever
AU  - O. K. Sheinman
TI  - Lax Operator Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 46
EP  - 59
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a3/
LA  - ru
ID  - FAA_2007_41_4_a3
ER  - 
%0 Journal Article
%A I. M. Krichever
%A O. K. Sheinman
%T Lax Operator Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 46-59
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a3/
%G ru
%F FAA_2007_41_4_a3
I. M. Krichever; O. K. Sheinman. Lax Operator Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 46-59. http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a3/

[1] I. M. Krichever, “Vector bundles and Lax equations on algebraic curves”, Comm. Math. Phys., 229:2 (2002), 229–269 ; http://arxiv.org/abs/hep-th/0108110 | DOI | MR | Zbl

[2] I. M. Krichever, “Isomonodromy equations on algebraic curves, canonical transformations and Witham equations”, Mosc. Math. J., 2:4 (2002), 717–752, 806 ; http://arxiv.org/abs/hep-th/0112096 | DOI | MR | Zbl

[3] I. M. Krichever, S. P. Novikov, “Algebry tipa Virasoro, rimanovy poverkhnosti i struktury teorii solitonov”, Funkts. analiz i ego pril., 21:2 (1987), 46–63 | MR | Zbl

[4] I. M. Krichever, S. P. Novikov, “Algebry tipa Virasoro, rimanovy poverkhnosti i struny v prostranstve Minkovskogo”, Funkts. analiz i ego pril., 21:4 (1987), 47–61 | MR | Zbl

[5] I. M. Krichever, S. P. Novikov, “Algebry tipa Virasoro, tenzor energii-impulsa i operatornye razlozheniya na rimanovykh poverkhnostyakh”, Funkts. analiz i ego pril., 23:1 (1989), 24–40 | MR | Zbl

[6] I. M. Krichever, S. P. Novikov, “Golomorfnye rassloeniya i kommutiruyuschie raznostnye operatory. Dvukhtochechnye konstruktsii”, UMN, 55:3 (2000), 181–182 | DOI | MR | Zbl

[7] I. M. Krichever, S. P. Novikov, “Golomorfnye rassloeniya na rimanovykh poverkhnostyakh i uravnenie Kadomtseva–Petviashvili (KP). I”, Funkts. analiz i ego pril., 12:4 (1978), 41–52 | MR | Zbl

[8] I. M. Krichever, S. P. Novikov, “Golomorfnye rassloeniya na algebraicheskikh krivykh i nelineinye uravneniya”, UMN, 35:6 (1980), 47–68 | MR | Zbl

[9] M. Schlichenmaier, “Local cocycles and central extensions for multi-point algebras of Krichever–Novikov type”, J. Reine Angew. Math., 559 (2003), 53–94 | MR | Zbl

[10] M. Schlichenmaier, “Higher genus affine algebras of Krichever–Novikov type”, Moscow Math. J., 3:4 (2003), 1395–1427 ; http://arxiv.org/abs/math/0210360 | DOI | MR | Zbl

[11] O. K. Sheinman, “Affine Krichever-Novikov algebras, their representations and applications”, Geometry, Topology and Mathematical Physics. S. P. Novikov's Seminar 2002–2003, Amer. Soc. Transl. (2), 212, eds. V. M. Buchstaber, I. M. Krichever, Amer. Math. Soc., Providence, R.I., 2004, 297–316 ; http://arxiv.org/abs/Math.RT/0304020 | MR | Zbl

[12] A. N. Tyurin, “Klassifikatsiya vektornykh rassloenii na algebraicheskikh krivykh proizvolnogo roda”, Izv. AN SSSR, ser. mat., 29 (1965), 657–688 | Zbl