Lax Operator Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 46-59

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we develop a general concept of Lax operators on algebraic curves introduced in [I. M. Krichever, Comm. Math. Phys., 229, 2 (2002), 229–269]. We observe that the space of Lax operators is closed with respect to their usual multiplication as matrix-valued functions. We construct the orthogonal and symplectic analogs of Lax operators, prove that they constitute almost graded Lie algebras and construct local central extensions of those Lie algebras.
Keywords: Lax operators, current algebras, Tyurin data, almost graded structure, local central extension.
@article{FAA_2007_41_4_a3,
     author = {I. M. Krichever and O. K. Sheinman},
     title = {Lax {Operator} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {46--59},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a3/}
}
TY  - JOUR
AU  - I. M. Krichever
AU  - O. K. Sheinman
TI  - Lax Operator Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 46
EP  - 59
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a3/
LA  - ru
ID  - FAA_2007_41_4_a3
ER  - 
%0 Journal Article
%A I. M. Krichever
%A O. K. Sheinman
%T Lax Operator Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 46-59
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a3/
%G ru
%F FAA_2007_41_4_a3
I. M. Krichever; O. K. Sheinman. Lax Operator Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 4, pp. 46-59. http://geodesic.mathdoc.fr/item/FAA_2007_41_4_a3/