On Convergence of Functions of Normal Operators in Strong Operator Topology
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 3, pp. 93-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

The theorem in [E. B. Davies, J. London Math. Soc. (2), 4, 435–436 (1972)] is extended. As a corollary, Kadison's theorem on strong continuity of operator functions is refined.
Keywords: normal operator, operator function, strong operator topology.
@article{FAA_2007_41_3_a7,
     author = {O. E. Tikhonov},
     title = {On {Convergence} of {Functions} of {Normal} {Operators} in {Strong} {Operator} {Topology}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {93--95},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a7/}
}
TY  - JOUR
AU  - O. E. Tikhonov
TI  - On Convergence of Functions of Normal Operators in Strong Operator Topology
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 93
EP  - 95
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a7/
LA  - ru
ID  - FAA_2007_41_3_a7
ER  - 
%0 Journal Article
%A O. E. Tikhonov
%T On Convergence of Functions of Normal Operators in Strong Operator Topology
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 93-95
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a7/
%G ru
%F FAA_2007_41_3_a7
O. E. Tikhonov. On Convergence of Functions of Normal Operators in Strong Operator Topology. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 3, pp. 93-95. http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a7/

[1] E. B. Davies, J. London Math. Soc. (2), 4 (1972), 435–436 | DOI | MR | Zbl

[2] R. V. Kadison, Pacific J. Math., 26 (1968), 121–129 | DOI | MR | Zbl

[3] M. Takesaki, Theory of operator algebras I, Springer-Verlag, Berlin–Heidelberg–New York, 1979 | MR

[4] S. Strǎtilǎ, Modular theory in operator algebras, Editura Academiei, Bucuresti; Abacus Press, Tunbridge Wells, Kent, 1981 | MR

[5] O. E. Tikhonov, Izv. VUZov, matem., 1987, no. 1, 77–79 | MR | Zbl