On the Radical for Some Class of Banach Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 3, pp. 89-93.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $A$ be a complex Banach algebra. It is well known that the second dual $A^{**}$ of $A$ can be equipped with a multiplication that extends the original multiplication on $A$ and makes $A^{**}$ a Banach algebra. We show that $\operatorname{Rad}(A)={}^\bot(A^*\cdot A)$ and $\operatorname{Rad}(A^{**})=(A^*\cdot A)^\bot$ for some classes of Banach algebras $A$ with scattered structure space. Some applications of these results are given.
Keywords: Banach algebra, group algebra, radical, spectrum.
Mots-clés : homomorphism
@article{FAA_2007_41_3_a6,
     author = {H. S. Mustafaev},
     title = {On the {Radical} for {Some} {Class} of {Banach} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {89--93},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a6/}
}
TY  - JOUR
AU  - H. S. Mustafaev
TI  - On the Radical for Some Class of Banach Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 89
EP  - 93
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a6/
LA  - ru
ID  - FAA_2007_41_3_a6
ER  - 
%0 Journal Article
%A H. S. Mustafaev
%T On the Radical for Some Class of Banach Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 89-93
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a6/
%G ru
%F FAA_2007_41_3_a6
H. S. Mustafaev. On the Radical for Some Class of Banach Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 3, pp. 89-93. http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a6/

[1] F. F. Bonsall, J. Duncan, Complete Normed Algebras, Springer-Verlag, New York–Heidelberg, 1973 | MR | Zbl

[2] P. Civin, B. Yood, Pacific J. Math., 11 (1961), 847–870 | DOI | MR | Zbl

[3] J. Duncan, S. A. R. Hosseiniun, Proc. Roy. Soc. Edinburgh Sect. A, 84:3–4 (1979), 309–325 | DOI | MR | Zbl

[4] I. Gelfand, Matem. sb., 9 (1941), 49–50 | MR | Zbl

[5] I. Gelfand, D. Raikov, G. Shilov, Commutative Normed Rings, Chelsea Publ. Comp., 1964 ; I. M. Gelfand, D. A. Raikov, G. E. Shilov, Kommutativnye normirovannye koltsa, Fizmatlit, M., 1960 | MR | MR

[6] E. A. Gorin, Funkts. analiz i ego pril., 8:2 (1974), 73–74 | MR | Zbl

[7] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, 2, Nauka, M., 1975 | MR

[8] E. Khille, R. Fillips, Funktsionalnyi analiz i polugruppy, IL, M., 1962 | MR

[9] R. Larsen, An Introduction to the Theory of Multipliers, Springer-Verlag, New York–Heidelberg, 1971 | MR | Zbl

[10] R. Larsen, Banach Algebras, Marcel Dekker, New York, 1973 | MR

[11] B. M. Levitan, V. V. Zhikov, Pochti periodicheskie funktsii i differentsialnye uravneniya, Izd-vo MGU, M., 1978 | MR | Zbl

[12] L. H. Loomis, Ann. Math. (2), 72 (1960), 362–368 | DOI | MR | Zbl

[13] Yu. I. Lyubich, Vvedenie v teoriyu banakhovykh predstavlenii grupp, Vysshaya shkola, Kharkov, 1985 | MR

[14] H. S. Mustafayev, Bull. Polish. Acad. Sci. Math., 52:4 (2004), 395–403 | DOI | MR | Zbl

[15] H. Reiter, Classical Harmonic Analysis and Locally Compact Groups, Clarendon Press, Oxford, 1968 | MR | Zbl

[16] C. Rickart, General Theory of Banach Algebras, Van Nostrand, Princeton, 1960 | MR | Zbl