The Schrödinger Operator: Perturbation Determinants, the Spectral Shift Function, Trace Identities, and All That
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 3, pp. 60-83 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We discuss applications of the M. G. Krein theory of the spectral shift function to the multidimensional Schrödinger operator. Specific properties of this function, for example, its high-energy asymptotics are studied. Trace identities are derived.
Keywords: M. G. Krein spectral shift function, multidimensional Schrödinger operator, high-energy asymptotics, trace identities.
Mots-clés : trace formula
@article{FAA_2007_41_3_a4,
     author = {D. R. Yafaev},
     title = {The {Schr\"odinger} {Operator:} {Perturbation} {Determinants,} the {Spectral} {Shift} {Function,} {Trace} {Identities,} and {All} {That}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {60--83},
     year = {2007},
     volume = {41},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a4/}
}
TY  - JOUR
AU  - D. R. Yafaev
TI  - The Schrödinger Operator: Perturbation Determinants, the Spectral Shift Function, Trace Identities, and All That
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 60
EP  - 83
VL  - 41
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a4/
LA  - ru
ID  - FAA_2007_41_3_a4
ER  - 
%0 Journal Article
%A D. R. Yafaev
%T The Schrödinger Operator: Perturbation Determinants, the Spectral Shift Function, Trace Identities, and All That
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 60-83
%V 41
%N 3
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a4/
%G ru
%F FAA_2007_41_3_a4
D. R. Yafaev. The Schrödinger Operator: Perturbation Determinants, the Spectral Shift Function, Trace Identities, and All That. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 3, pp. 60-83. http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a4/

[1] S. Agmon and Y. Kannai, “On the asymptotic behavior of spectral functions and resolvent kernels of elliptic operators”, Israel J. Math., 5 (1967), 1–30 | DOI | MR | Zbl

[2] V. M. Babich, Yu. O. Rapoport, “Asimptotika pri malykh vremenakh fundamentalnogo resheniya zadachi Koshi dlya parabolicheskogo uravneniya vtorogo poryadka”, Problemy matem. fiz., 7 (1974), 21–38

[3] M. Sh. Birman, M. G. Krein, “K teorii volnovykh operatorov i operatorov rasseyaniya”, Dokl. AN SSSR, ser. matem., 144 (1962), 475–478 | MR | Zbl

[4] M. Sh. Birman, M. Z. Solomyak, “Zamechaniya o funktsii spektralnogo sdviga”, Zap. nauchn. sem. LOMI, 27 (1972), 33–46 | MR | Zbl

[5] M. Sh. Birman, D. R. Yafaev, “Funktsiya spektralnogo sdviga. Raboty M. G. Kreina i ikh dalneishee razvitie”, Algebra i analiz, 4:5 (1992), 1–44 | MR | Zbl

[6] M. Sh. Birman, D. R. Yafaev, “Spektralnye svoistva matritsy rasseyaniya”, Algebra i analiz, 4:6 (1992), 1–27 | MR | Zbl

[7] J.-M. Bouclet, “Trace formulae for relatively Hilbert–Schmidt perturbations”, Asympt. Anal., 32:3–4 (2002), 257–291 | MR | Zbl

[8] V. S. Buslaev, “Formuly sledov i nekotorye asimptoticheskie otsenki yadra rezolventy dlya operatora Shrëdingera v trekhmernom prostranstve”, Problemy matem. fiz., 1 (1966), 82–101 | MR | Zbl

[9] V. S. Buslaev, L. D. Faddeev, “O formulakh sledov dlya singulyarnogo differentsialnogo operatora Shturma–Liuvillya”, Dokl. AN SSSR, ser. matem., 132 (1960), 13–16 | MR | Zbl

[10] Y. Colin de Verdière, “Une formule de traces pour l'opérateur de Schrödinger dans $\mathbb{R}^3$”, Ann. Sci. École Norm. Sup. (4), 14:1 (1981), 27–39 | DOI | MR | Zbl

[11] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[12] V. E. Zakharov, L. D. Faddeev, “Uravnenie Kortevega-de Frisa — vpolne integriruemaya gamiltonova sistema”, Funkts. analiz i ego pril., 5:4 (1971), 18–27 | MR | Zbl

[13] M. Hitrik, I. Polterovich, “Resolvent expansions and trace regularizations for Schrödinger operators”, Contemp. Math., 327 (2003), 161–173 | DOI | MR | Zbl

[14] M. Hitrik, I. Polterovich, “Regularized traces and Taylor expansions for the heat semigroup”, J. London Math. Soc., 68:2 (2003), 402–418 | DOI | MR | Zbl

[15] A. Jensen, T. Kato, “Spectral properties of Schrödinger operators and time-decay of the wave functions”, Duke Math. J., 46:3 (1979), 583–611 | DOI | MR | Zbl

[16] S. Kantorovitz, “$\mathbb{C}^n$-operational calculus, noncommutative Taylor formula and perturbation of semigroups”, J. Funct. Anal., 113:1 (1993), 139–152 | DOI | MR | Zbl

[17] L. S. Koplienko, “K teorii funktsii spektralnogo sdviga”, Problemy matem. fiz., 5 (1971), 62–72 | MR | Zbl

[18] L. S. Koplienko, “Formula sleda dlya vozmuschenii neyadernogo tipa”, Sib. matem. zh., 25:5 (1984), 62–71 | MR | Zbl

[19] M. G. Krein, “O formule sleda v teorii vozmuschenii”, Matem. sb., 33 (1953), 597–626 | MR | Zbl

[20] M. G. Krein, “Ob opredelitelyakh vozmuscheniya i formule sledov dlya unitarnykh i samosopryazhennykh operatorov”, Dokl. AN SSSR, ser. matem., 144 (1962), 268–271 | MR | Zbl

[21] M. G. Krein, “O nekotorykh novykh issledovaniyakh po teorii vozmuschenii”, Pervaya letnyaya matem. shkola, Naukova dumka, Kiev, 1964, 103–187 | MR

[22] S. T. Kuroda, “Scattering theory for differential operators”, J. Math. Soc. Japan, 25:1, 2 (1973), 75–104, 222–234 | DOI | MR | Zbl

[23] I. M. Lifshits, “Ob odnoi zadache teorii vozmuschenii”, UMN, 7:1 (1952), 171–180 | MR | Zbl

[24] R. Newton, “Noncentral potentials: The generalized Levinson theorem and the structure of the spectrum”, J. Math. Phys., 18:7 (1977), 1348–1357 | DOI | MR

[25] V. V. Peller, “Operatory Gankelya v teorii vozmuschenii unitarnykh i samosopryazhennykh operatorov”, Funkts. analiz i ego pril., 19:2 (1985), 37–51 | MR | Zbl

[26] I. Polterovich, “Heat invariants of Riemannian manifolds”, Israel J. Math., 119 (2000), 239–252 | DOI | MR | Zbl

[27] M. Rid, B. Saimon, Metody sovremennoi matematicheskoi fiziki, t. 3, 4, Mir, Moskva, 1982 | MR

[28] D. Robert, “Asymptotique à grande énergie de la phase de diffusion pour un potentiel”, Asympt. Anal., 3:4 (1991), 301–320 | MR

[29] D. Robert, “Semiclassical asymptotics for the spectral shift function”, Differential operators and spectral theory, Amer. Math. Soc. Transl., Ser. 2, 189, Amer. Math. Soc., Providence, RI, 1999, 187–203 | MR | Zbl

[30] M. A. Shubin, Psevdodifferentsialnye operatory i spektralnaya teoriya, Nauka, M., 1978 | MR

[31] M. M. Skriganov, “Ravnomernye koordinatnye i spektralnye asimptotiki reshenii zadachi rasseyaniya dlya uravneniya Shrëdingera”, Zap. nauchn. sem. LOMI, 69 (1977), 171–199 | MR | Zbl

[32] D. R. Yafaev, “Zamechanie o teorii rasseyaniya dlya vozmuschennogo poligarmonicheskogo operatora”, Matem. zametki, 15 (1974), 445–454 | Zbl

[33] D. R. Yafaev, Matematicheskaya teoriya rasseyaniya, Izd-vo S.-Peterburgskogo Universiteta, 1994 | MR

[34] D. R. Yafaev, “High energy asymptotics of the scattering amplitude for the Schrödinger equation”, Proc. Indian Acad. Sci., Math. Sci., 112:1 (2002), 245–255 | DOI | MR | Zbl

[35] D. R. Yafaev, “High energy and smoothness asymptotic expansion of the scattering amplitude”, J. Funct. Anal., 202:2 (2003), 526–570 | DOI | MR | Zbl