Detecting the Orientation of String Links by Finite Type Invariants
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 3, pp. 48-59.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove the existence of a degree 7 Vassiliev invariant of long (string) links with two numbered components which is not preserved under orientation reversal. The proof is based on the study of a weight system with values in the tensor square of the universal enveloping algebra for the Lie algebra $\mathfrak{gl}_N$.
Keywords: link, knot, Vassiliev invariant, invertibility.
@article{FAA_2007_41_3_a3,
     author = {S. V. Duzhin and M. V. Karev},
     title = {Detecting the {Orientation} of {String} {Links} by {Finite} {Type} {Invariants}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {48--59},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a3/}
}
TY  - JOUR
AU  - S. V. Duzhin
AU  - M. V. Karev
TI  - Detecting the Orientation of String Links by Finite Type Invariants
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 48
EP  - 59
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a3/
LA  - ru
ID  - FAA_2007_41_3_a3
ER  - 
%0 Journal Article
%A S. V. Duzhin
%A M. V. Karev
%T Detecting the Orientation of String Links by Finite Type Invariants
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 48-59
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a3/
%G ru
%F FAA_2007_41_3_a3
S. V. Duzhin; M. V. Karev. Detecting the Orientation of String Links by Finite Type Invariants. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 3, pp. 48-59. http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a3/

[1] D. Bar-Natan, “On the Vassiliev knot invariants”, Topology, 34:2 (1995), 423–472 | DOI | MR | Zbl

[2] D. Bar-Natan, “Vassiliev homotopy string link invariants”, J. Knot Theory Ramifications, 4:1 (1995), 13–32 | DOI | MR | Zbl

[3] D. Bar-Natan, Some computations related to Vassiliev invariants, , 1996 http://www.math.toronto.edu/d̃rorbn/papers | MR

[4] D. Bar-Natan, S. Garoufalidis, L. Rozansky, D. Thurston, “The Århus integral of rational homology 3-spheres II: Invariance and universality”, Selecta Math. (N. S.), 8:3 (2002), 341–371 ; http://arxiv.org/math.QA/9801049 | DOI | MR | Zbl

[5] S. Duzhin, Programmy i faily dannykh, otnosyaschiesya k vychisleniyu vesovykh sistem $\phi$ i $\psi$,, http://www.pdmi.ras.ru/ãrnsem/dataprog/OrLinks/

[6] S. Chmutov, S. Duzhin, J. Mostovoy, CDBook. Introduction to Vassiliev knot invariants, draft version of a book, Online at http://www.pdmi.ras.ru/d̃uzhin/papers/ | MR

[7] T. Fiedler, Isotopy invariants for closed braids and almost closed braids via loops in stratified spaces, http://arxiv.org/math.GT/0606443

[8] A. Kawauchi, “The invertibility problem on amphicheiral excellent knots”, Proc. Japan Acad. Ser. A Math. Sci., 55:10 (1979), 399–402 | DOI | MR | Zbl

[9] M. Kontsevich, “Vassiliev's knot invariants”, Adv. Soviet Math., 16, Part 2 (1993), 137–150 | MR | Zbl

[10] X.-S. Lin, “Finite type link invariants and the invertibility of links”, Math. Res. Lett., 3:3 (1996), 405–417 ; http://arxiv.org/q-alg/9601019 | DOI | MR | Zbl

[11] X.-S. Lin, “Finite type link-homotopy invariants”, Enseign. Math. (2), 47:3–4 (2001), 315–327 ; http://arxiv.org/math.GT/0012095 | MR | Zbl

[12] T. Q. T. Le, J. Murakami, “The universal Vassiliev–Kontsevich invariant for framed oriented links”, Compositio Math., 102:1 (1996), 41–64 | MR | Zbl

[13] T. Stanford, “Finite-type invariants of knots, links and graphs”, Topology, 35:4 (1996), 1027–1050 | DOI | MR | Zbl

[14] H. F. Trotter, “Non-invertible knots exist”, Topology, 2:4 (1963), 275–280 | DOI | MR | Zbl

[15] E. B. Vinberg, V. L. Popov, “Teoriya invariantov”, Itogi nauki i tekhniki, Sovremennye problemy matematiki, Fundamentalnye napravleniya, 55, VINITI, M., 1989, 137–314 | MR

[16] P. Vogel, Algebraic structures on modules of diagrams, Prépublication 32, Institut de Mathématiques de Jussieu, August 1995; Revised in 1997, http://www.math.jussieu.fr/ṽogel/

[17] G. Veil, Klassicheskie gruppy, ikh invarianty i predstavleniya, IL, M., 1947