Quasilinear Burgers--Hopf Equation and Stasheff Polytopes
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 3, pp. 34-47.

Voir la notice de l'article provenant de la source Math-Net.Ru

The generating function for the numbers of faces of the $n$th Stasheff polytope is shown to satisfy the quasilinear Burgers–Hopf equation. Applications of this result are given.
Keywords: Stasheff polytope, Catalan number, Burgers–Hopf equation, generating function, series of polytopes, modular graph.
@article{FAA_2007_41_3_a2,
     author = {V. M. Buchstaber and E. V. Koritskaya},
     title = {Quasilinear {Burgers--Hopf} {Equation} and {Stasheff} {Polytopes}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {34--47},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a2/}
}
TY  - JOUR
AU  - V. M. Buchstaber
AU  - E. V. Koritskaya
TI  - Quasilinear Burgers--Hopf Equation and Stasheff Polytopes
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 34
EP  - 47
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a2/
LA  - ru
ID  - FAA_2007_41_3_a2
ER  - 
%0 Journal Article
%A V. M. Buchstaber
%A E. V. Koritskaya
%T Quasilinear Burgers--Hopf Equation and Stasheff Polytopes
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 34-47
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a2/
%G ru
%F FAA_2007_41_3_a2
V. M. Buchstaber; E. V. Koritskaya. Quasilinear Burgers--Hopf Equation and Stasheff Polytopes. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 3, pp. 34-47. http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a2/

[1] S. A. Aivazyan, V. M. Bukhshtaber, I. S. Enyukov, L. D. Meshalkin, Prikladnaya statistika: Klassifikatsiya i snizhenie razmernosti, Finansy i statistika, M., 1989 | MR | Zbl

[2] I. V. Artamkin, “Proizvodyaschie funktsii modulyarnykh grafov i uravnenie Byurgersa”, Matem. sb., 196:12 (2005), 3–32 | DOI | MR

[3] V. M. Buchstaber, V. Z. Enolskii, D. V. Leykin, “Hyperelliptic Kleinian functions and applications”, Solitons, Geometry and Topology: On the Crossroad, Amer. Math. Soc. Transl., Ser. 2, 179, eds. V. M. Buchstaber, S. P. Novikov, 1997, 1–33 | MR

[4] V. M. Bukhshtaber, I. M. Krichever, “Integriruemye uravneniya, teoremy slozheniya i problema Rimana–Shottki”, UMN, 61:1 (2006), 25–84 | DOI | MR

[5] V. M. Bukhshtaber, T. E. Panov, Toricheskie deistviya v topologii i kombinatorike, MTsNMO, M., 2004 | MR

[6] S. Fomin, A. Zelevinsky, “Y-systems and generalized associahedra”, Ann of Math. (2), 158:3 (2003), 977–1018 | DOI | MR | Zbl

[7] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinskii, Discriminants, resultants, and multidimentional determinants, Birkhäuser, Boston, 1994 | MR

[8] Ch. Hohlweg, C. Lange, Realizations of the associahedron and cyclohedron, http://arxiv.org/abs/math.CO/0510614 | MR

[9] J.-L. Loday, “Realization of the Stasheff polytope”, Arch. Math., 83:3 (2004), 267–278 | DOI | MR | Zbl

[10] J.-L. Loday, M. O. Ronco, Trialgebras and families of polytopes,, http://arxiv.org/abs/math.AT/0205043 | MR

[11] A. P. Prudnikov, Yu. A. Brychkov, O. I. Marichev, Integraly i ryady, Nauka, M., 1981 | MR | Zbl

[12] J. D. Stasheff, “Homotopy associativity of $H$-spaces. I, II”, Trans. Amer. Math. Soc., 108:2 (1963), 275–292 | DOI | MR | Zbl

[13] J. D. Stasheff, “From operads to “physically” inspired theories”, Operads, Proceeding of Renaissance Conferences (Hartford, CT/Luminy, 1995), Contemp. Math., 202, Amer. Math. Soc., Providence, RI, 1997, 53–81 | DOI | MR | Zbl

[14] R. Stenli, Perechislitelnaya kombinatorika. Derevya, proizvodyaschie funktsii i simmetricheskie funktsii, Mir, M., 2005 | MR

[15] Dzh. Uizem, Lineinye i nelineinye volny, Mir, M., 1977

[16] V. F. Zaitsev, A. D. Polyanin, Spravochnik po differentsialnym uravneniyam s chastnymi proizvodnymi pervogo poryadka, Fizmatlit, M., 2003 | Zbl