Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2007_41_3_a1, author = {D. Z. Arov and H. Dym}, title = {Direct and {Inverse} {Asymptotic} {Scattering} {Problems} for {Dirac--Krein} {Systems}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {17--33}, publisher = {mathdoc}, volume = {41}, number = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a1/} }
TY - JOUR AU - D. Z. Arov AU - H. Dym TI - Direct and Inverse Asymptotic Scattering Problems for Dirac--Krein Systems JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2007 SP - 17 EP - 33 VL - 41 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a1/ LA - ru ID - FAA_2007_41_3_a1 ER -
D. Z. Arov; H. Dym. Direct and Inverse Asymptotic Scattering Problems for Dirac--Krein Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 3, pp. 17-33. http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a1/
[1] D. Alpay, I. Gohberg, M. A. Kaashoek, A. L. Sakhnovich, “Direct and inverse scattering problem for canonical systems with a strictly pseudo-exponential potential”, Math. Nachr., 215:1 (2000), 5–31 | 3.0.CO;2-M class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[2] V. M. Adamyan, D. Z. Arov, M. G. Krein, “Analiticheskie svoistva par Shmidta gankeleva operatora i obobschennaya zadacha Shura–Takagi”, Matem. sb., 86(128):1(9) (1971), 34–75 | MR
[3] D. Z. Arov, H. Dym, “On three Krein extension problems and some generalizations”, Integral Equations Operator Theory, 31:1 (1998), 1–91 | DOI | MR | Zbl
[4] D. Z. Arov, H. Dym, “J-inner matrix functions, interpolation and inverse problems for canonical systems, V: The inverse input scattering problem for Wiener class and rational $p\times q$ input scattering matrices”, Integral Equations Operator Theory, 43:1 (2002), 68–129 | DOI | MR
[5] D. Z. Arov, H. Dym, “The bitangential inverse spectral problem for canonical systems”, J. Funct. Anal., 214:2 (2004), 312–385 | DOI | MR | Zbl
[6] D. Z. Arov, H. Dym, “Direct and inverse problems for differential systems connected with Dirac systems and related factorization problems”, Indiana Univ. Math. J., 54:6 (2005), 1769–1816 | DOI | MR
[7] D. Z. Arov, H. Dym, “Strongly regular $J$-inner matrix valued functions and inverse problems for canonical systems”, Oper. Theory Adv. Appl., 160, Birkhäuser, Basel, 2005, 101–160 | MR | Zbl
[8] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR
[9] S. A. Denisov, “Continuous analogs of polynomials orthogonal on the unit circle and Krein systems”, IMRS Int. Math. Res. Surv., 2006, Art. ID 54517 | MR
[10] H. Dym, “On reproducing kernels and the continuous covariance extension problem”, Analysis and Partial Differential Equations, ed. C. Sadosky, Marcel Dekker, New York, 1990, 427–482 | MR
[11] H. Dym, A. Iacob, “Positive definite extensions, canonical equations and inverse problems”, Topics in Operator Theory, Systems and Networks, Oper. Theory Adv. Appl., 12, eds. H. Dym and I. Gohberg, Birkhäuser, Basel, 1984, 141–240 | MR
[12] I. Gohberg, I. Koltracht, “Numerical solution of integral equations, fast algorithms and Krein–Sobolev equation”, Numer. Math., 47:2 (1985), 237–288 | DOI | MR | Zbl
[13] A. Iacob, On the Spectral Theory of a Class of Canonical Systems of Differential Equations, PhD Thesis, The Weizmann Institute of Science, Rehovot, Israel, 1986
[14] M. G. Krein, “Ob opredelenii potentsiala chastitsy po ee $S$-funktsii”, Dokl. AN SSSR, 105:3 (1955), 433–436 | MR | Zbl
[15] M. G. Krein, “Kontinualnye analogi predlozhenii o mnogochlenakh, ortogonalnykh na edinichnoi okruzhnosti”, Dokl. AN SSCR, 105:4 (1955), 637–640 | MR | Zbl
[16] M. G. Krein, “K teorii akselerant i $S$-matrits kanonicheskikh differentsialnykh sistem”, Dokl. AN SSCR, 111 (1956), 1167–1170 | MR | Zbl
[17] M. G. Krein, H. Langer, “On some continuation problems which are closely related to the theory of operators in spaces $\Pi_{\kappa}$. IV: Continuous analogues of orthogonal polynomials on the unit circle with respect to an indefinite weight and related continuation problems for some classes of functions”, J. Oper. Theory, 13:2 (1985), 299–417 | MR | Zbl
[18] M. G. Krein, F. E. Melik-Adamyan, “O teorii $S$-matrits kanonicheskikh differentsialnykh uravnenii s summiruemym potentsialom”, Dokl. AN ArmSSR, 46:4 (1968), 150–155 | MR | Zbl
[19] M. G. Krein, F. E. Melik-Adamyan, “Nekotorye prilozheniya teoremy o faktorizatsii unitarnoi matritsy”, Funkts. analiz i ego pril., 4:4 (1970), 73–75 | MR | Zbl
[20] M. G. Krein, F. E. Melik-Adamyan, “Integralnye gankelevy operatory i svyazannye s nimi problemy prodolzheniya”, Izv. AN ArmSSR, 19:4 (1984), 311–332 | MR | Zbl
[21] M. G. Krein, F. E. Melik-Adamyan, “Matrichno-kontinualnye analogi zadach Shura i Karateodori–Tëplitsa”, Izv. AN Arm. SSR, 21:2 (1986), 107–141 | MR | Zbl
[22] L. A. Sakhnovich, Spectral Theory of Canonical Differential Systems. Method of Operator Identities, Birkhäuser, Basel, 1999 | MR | Zbl
[23] L. A. Sakhnovich, “On Krein's differential system and its generalization”, Integral Equations Operator Theory, 55:4 (2006), 561–572 | DOI | MR | Zbl