Direct and Inverse Asymptotic Scattering Problems for Dirac--Krein Systems
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 3, pp. 17-33.

Voir la notice de l'article provenant de la source Math-Net.Ru

The asymptotic scattering matrix $s_{\varepsilon}(\lambda)$ for a Dirac–Krein system with signature matrix $J=\operatorname{diag}\{I_p,-I_p\}$, integrable potential, and the boundary condition $u_1(0,\lambda)=u_2(0,\lambda)\varepsilon(\lambda)$ with a coefficient $\varepsilon(\lambda)$ that belongs to the Schur class of holomorphic contractive $p\times p$ matrix-valued functions in the open upper half-plane is defined. The inverse asymptotic scattering problem for a given $s_{\varepsilon}$ is analyzed by Krein's method. Earlier studies by Krein and others focused on the case in which $\varepsilon=I_p$ (or a constant unitary matrix).
Keywords: inverse problem, asymptotic scattering matrix, matrix-valued function, Hilbert space, linear bounded operator, Nehari problem, Schur problem, Hankel operator, Toeplitz operator, Wiener class.
@article{FAA_2007_41_3_a1,
     author = {D. Z. Arov and H. Dym},
     title = {Direct and {Inverse} {Asymptotic} {Scattering} {Problems} for {Dirac--Krein} {Systems}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {17--33},
     publisher = {mathdoc},
     volume = {41},
     number = {3},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a1/}
}
TY  - JOUR
AU  - D. Z. Arov
AU  - H. Dym
TI  - Direct and Inverse Asymptotic Scattering Problems for Dirac--Krein Systems
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 17
EP  - 33
VL  - 41
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a1/
LA  - ru
ID  - FAA_2007_41_3_a1
ER  - 
%0 Journal Article
%A D. Z. Arov
%A H. Dym
%T Direct and Inverse Asymptotic Scattering Problems for Dirac--Krein Systems
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 17-33
%V 41
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a1/
%G ru
%F FAA_2007_41_3_a1
D. Z. Arov; H. Dym. Direct and Inverse Asymptotic Scattering Problems for Dirac--Krein Systems. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 3, pp. 17-33. http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a1/

[1] D. Alpay, I. Gohberg, M. A. Kaashoek, A. L. Sakhnovich, “Direct and inverse scattering problem for canonical systems with a strictly pseudo-exponential potential”, Math. Nachr., 215:1 (2000), 5–31 | 3.0.CO;2-M class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[2] V. M. Adamyan, D. Z. Arov, M. G. Krein, “Analiticheskie svoistva par Shmidta gankeleva operatora i obobschennaya zadacha Shura–Takagi”, Matem. sb., 86(128):1(9) (1971), 34–75 | MR

[3] D. Z. Arov, H. Dym, “On three Krein extension problems and some generalizations”, Integral Equations Operator Theory, 31:1 (1998), 1–91 | DOI | MR | Zbl

[4] D. Z. Arov, H. Dym, “J-inner matrix functions, interpolation and inverse problems for canonical systems, V: The inverse input scattering problem for Wiener class and rational $p\times q$ input scattering matrices”, Integral Equations Operator Theory, 43:1 (2002), 68–129 | DOI | MR

[5] D. Z. Arov, H. Dym, “The bitangential inverse spectral problem for canonical systems”, J. Funct. Anal., 214:2 (2004), 312–385 | DOI | MR | Zbl

[6] D. Z. Arov, H. Dym, “Direct and inverse problems for differential systems connected with Dirac systems and related factorization problems”, Indiana Univ. Math. J., 54:6 (2005), 1769–1816 | DOI | MR

[7] D. Z. Arov, H. Dym, “Strongly regular $J$-inner matrix valued functions and inverse problems for canonical systems”, Oper. Theory Adv. Appl., 160, Birkhäuser, Basel, 2005, 101–160 | MR | Zbl

[8] Yu. L. Daletskii, M. G. Krein, Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR

[9] S. A. Denisov, “Continuous analogs of polynomials orthogonal on the unit circle and Krein systems”, IMRS Int. Math. Res. Surv., 2006, Art. ID 54517 | MR

[10] H. Dym, “On reproducing kernels and the continuous covariance extension problem”, Analysis and Partial Differential Equations, ed. C. Sadosky, Marcel Dekker, New York, 1990, 427–482 | MR

[11] H. Dym, A. Iacob, “Positive definite extensions, canonical equations and inverse problems”, Topics in Operator Theory, Systems and Networks, Oper. Theory Adv. Appl., 12, eds. H. Dym and I. Gohberg, Birkhäuser, Basel, 1984, 141–240 | MR

[12] I. Gohberg, I. Koltracht, “Numerical solution of integral equations, fast algorithms and Krein–Sobolev equation”, Numer. Math., 47:2 (1985), 237–288 | DOI | MR | Zbl

[13] A. Iacob, On the Spectral Theory of a Class of Canonical Systems of Differential Equations, PhD Thesis, The Weizmann Institute of Science, Rehovot, Israel, 1986

[14] M. G. Krein, “Ob opredelenii potentsiala chastitsy po ee $S$-funktsii”, Dokl. AN SSSR, 105:3 (1955), 433–436 | MR | Zbl

[15] M. G. Krein, “Kontinualnye analogi predlozhenii o mnogochlenakh, ortogonalnykh na edinichnoi okruzhnosti”, Dokl. AN SSCR, 105:4 (1955), 637–640 | MR | Zbl

[16] M. G. Krein, “K teorii akselerant i $S$-matrits kanonicheskikh differentsialnykh sistem”, Dokl. AN SSCR, 111 (1956), 1167–1170 | MR | Zbl

[17] M. G. Krein, H. Langer, “On some continuation problems which are closely related to the theory of operators in spaces $\Pi_{\kappa}$. IV: Continuous analogues of orthogonal polynomials on the unit circle with respect to an indefinite weight and related continuation problems for some classes of functions”, J. Oper. Theory, 13:2 (1985), 299–417 | MR | Zbl

[18] M. G. Krein, F. E. Melik-Adamyan, “O teorii $S$-matrits kanonicheskikh differentsialnykh uravnenii s summiruemym potentsialom”, Dokl. AN ArmSSR, 46:4 (1968), 150–155 | MR | Zbl

[19] M. G. Krein, F. E. Melik-Adamyan, “Nekotorye prilozheniya teoremy o faktorizatsii unitarnoi matritsy”, Funkts. analiz i ego pril., 4:4 (1970), 73–75 | MR | Zbl

[20] M. G. Krein, F. E. Melik-Adamyan, “Integralnye gankelevy operatory i svyazannye s nimi problemy prodolzheniya”, Izv. AN ArmSSR, 19:4 (1984), 311–332 | MR | Zbl

[21] M. G. Krein, F. E. Melik-Adamyan, “Matrichno-kontinualnye analogi zadach Shura i Karateodori–Tëplitsa”, Izv. AN Arm. SSR, 21:2 (1986), 107–141 | MR | Zbl

[22] L. A. Sakhnovich, Spectral Theory of Canonical Differential Systems. Method of Operator Identities, Birkhäuser, Basel, 1999 | MR | Zbl

[23] L. A. Sakhnovich, “On Krein's differential system and its generalization”, Integral Equations Operator Theory, 55:4 (2006), 561–572 | DOI | MR | Zbl