On Locally Definitizable Matrix Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 3, pp. 1-16 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study analytic properties of special classes of matrix functions (locally definitizable and locally Nevanlinna functions) by methods of operator theory. The aim of this paper is to prove that if $G(\lambda)$ is a locally definitizable or locally generalized matrix Nevanlinna function, then $-(G(\lambda))^{-1}$ belongs to the same class.
Keywords: Krein space, meromorphic function, definitizable operator-function, Nevanlinna matrix-function, generalized resolvent.
@article{FAA_2007_41_3_a0,
     author = {T. Ya. Azizov and P. Jonas},
     title = {On {Locally} {Definitizable} {Matrix} {Functions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {1--16},
     year = {2007},
     volume = {41},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a0/}
}
TY  - JOUR
AU  - T. Ya. Azizov
AU  - P. Jonas
TI  - On Locally Definitizable Matrix Functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 1
EP  - 16
VL  - 41
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a0/
LA  - ru
ID  - FAA_2007_41_3_a0
ER  - 
%0 Journal Article
%A T. Ya. Azizov
%A P. Jonas
%T On Locally Definitizable Matrix Functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 1-16
%V 41
%N 3
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a0/
%G ru
%F FAA_2007_41_3_a0
T. Ya. Azizov; P. Jonas. On Locally Definitizable Matrix Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 3, pp. 1-16. http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a0/

[1] T. Ya. Azizov, I. S. Iokhvidov, Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR

[2] J. Behrndt, P. Jonas, “On compact perturbations of locally definitizable selfadjoint relations in Krein spaces”, Integral Equations Operator Theory, 52:1 (2005), 17–44 | DOI | MR | Zbl

[3] V. Derkach, “On Weyl function and generalized resolvents of a Hermitian operator in a Krein space”, Integral Equations Operator Theory, 23:4 (1995), 387–415 | DOI | MR | Zbl

[4] V. Derkach, M. Malamud, “Generalized resolvents and the boundary value problems for Hermitian operators with gaps”, J. Funct. Anal., 95:1 (1991), 1–95 | DOI | MR | Zbl

[5] A. Dijksma, H. Langer, H. S. V. de Snoo, “Eigenvalues and pole functions of Hamiltonian systems with eigenvalue depending boundary conditions”, Math. Nachr., 161:1 (1993), 107–154 | DOI | MR | Zbl

[6] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR

[7] P. Jonas, “A note on perturbations of selfadjoint operators in Krein spaces”, Oper. Theory Adv. Appl., 43, Birkhäuser, Basel, 1990, 229–235 | MR

[8] P. Jonas, “A class of operator-valued meromorphic functions on the unit disc”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 17:2 (1992), 257–284 | DOI | MR | Zbl

[9] P. Jonas, “Operator representations of definitizable functions”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 25:1 (2000), 41–72 | MR | Zbl

[10] P. Jonas, “On locally definite operators in Krein spaces”, Spectral Theory and its Appl., Ion Colojoară Anniversary Volume, Theta, Bucharest, 2003, 95–127 | MR | Zbl

[11] P. Jonas, On operator representations of locally definitizable functions, Preprint Reihe Mathematik Nr. 2005/20, TU Berlin, 2005 | MR

[12] G. Köthe, Topologische lineare Räume. I, Die Grundlehren der mathematischen Wissenschaften, 107, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1960 | MR | Zbl

[13] M. G. Krein, G. K. Langer, “O defektnykh podprostranstvakh i obobschennykh rezolventakh ermitova operatora v prostranstve $\Pi_{\kappa}$”, Funkts. analiz i ego pril., 5:2 (1971), 59–71 | MR | Zbl

[14] M. G. Krein, H. Langer, “Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren in Raume $\Pi_{\kappa}$ zusammenhängen”, Math. Nachr., 77:1 (1977), 187–236 | DOI | MR | Zbl

[15] M. G. Krein, H. Langer, “Some propositions on analytic matrix functions related to the theory of operators in the space $\Pi_{\kappa}$”, Acta Sci. Math., 43:1–2 (1981), 181–205 | MR | Zbl

[16] M. G. Krein, H. Langer, “Über die $Q$-Funktion eines $\pi$-hermiteschen Operators im Raume $\Pi_{\kappa}$”, Acta Sci. Math., 34 (1973), 191–230 | MR | Zbl

[17] A. Luger, “A factorization of regular generalized Nevanlinna functions”, Integral Equations Operator Theory, 43:3 (2002), 326–345 | DOI | MR | Zbl

[18] B. Sz.-Nagy, A. Korányi, “Operatortheoretische Behandlung und Verallgemeinerung eines Problemkreises in der komplexen Funktionentheorie”, Acta Math., 100:3–4 (1958), 171–202 | DOI | MR

[19] Yu. L. Shmulyan, “Ob operatornykh $R$-funktsiyakh”, Sib. matem. zh., XII (1971), 442–451