Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2007_41_3_a0, author = {T. Ya. Azizov and P. Jonas}, title = {On {Locally} {Definitizable} {Matrix} {Functions}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {1--16}, publisher = {mathdoc}, volume = {41}, number = {3}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a0/} }
T. Ya. Azizov; P. Jonas. On Locally Definitizable Matrix Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 3, pp. 1-16. http://geodesic.mathdoc.fr/item/FAA_2007_41_3_a0/
[1] T. Ya. Azizov, I. S. Iokhvidov, Osnovy teorii lineinykh operatorov v prostranstvakh s indefinitnoi metrikoi, Nauka, M., 1986 | MR
[2] J. Behrndt, P. Jonas, “On compact perturbations of locally definitizable selfadjoint relations in Krein spaces”, Integral Equations Operator Theory, 52:1 (2005), 17–44 | DOI | MR | Zbl
[3] V. Derkach, “On Weyl function and generalized resolvents of a Hermitian operator in a Krein space”, Integral Equations Operator Theory, 23:4 (1995), 387–415 | DOI | MR | Zbl
[4] V. Derkach, M. Malamud, “Generalized resolvents and the boundary value problems for Hermitian operators with gaps”, J. Funct. Anal., 95:1 (1991), 1–95 | DOI | MR | Zbl
[5] A. Dijksma, H. Langer, H. S. V. de Snoo, “Eigenvalues and pole functions of Hamiltonian systems with eigenvalue depending boundary conditions”, Math. Nachr., 161:1 (1993), 107–154 | DOI | MR | Zbl
[6] I. Ts. Gokhberg, M. G. Krein, Vvedenie v teoriyu lineinykh nesamosopryazhennykh operatorov v gilbertovom prostranstve, Nauka, M., 1965 | MR
[7] P. Jonas, “A note on perturbations of selfadjoint operators in Krein spaces”, Oper. Theory Adv. Appl., 43, Birkhäuser, Basel, 1990, 229–235 | MR
[8] P. Jonas, “A class of operator-valued meromorphic functions on the unit disc”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 17:2 (1992), 257–284 | DOI | MR | Zbl
[9] P. Jonas, “Operator representations of definitizable functions”, Ann. Acad. Sci. Fenn. Ser. A. I. Math., 25:1 (2000), 41–72 | MR | Zbl
[10] P. Jonas, “On locally definite operators in Krein spaces”, Spectral Theory and its Appl., Ion Colojoară Anniversary Volume, Theta, Bucharest, 2003, 95–127 | MR | Zbl
[11] P. Jonas, On operator representations of locally definitizable functions, Preprint Reihe Mathematik Nr. 2005/20, TU Berlin, 2005 | MR
[12] G. Köthe, Topologische lineare Räume. I, Die Grundlehren der mathematischen Wissenschaften, 107, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1960 | MR | Zbl
[13] M. G. Krein, G. K. Langer, “O defektnykh podprostranstvakh i obobschennykh rezolventakh ermitova operatora v prostranstve $\Pi_{\kappa}$”, Funkts. analiz i ego pril., 5:2 (1971), 59–71 | MR | Zbl
[14] M. G. Krein, H. Langer, “Über einige Fortsetzungsprobleme, die eng mit der Theorie hermitescher Operatoren in Raume $\Pi_{\kappa}$ zusammenhängen”, Math. Nachr., 77:1 (1977), 187–236 | DOI | MR | Zbl
[15] M. G. Krein, H. Langer, “Some propositions on analytic matrix functions related to the theory of operators in the space $\Pi_{\kappa}$”, Acta Sci. Math., 43:1–2 (1981), 181–205 | MR | Zbl
[16] M. G. Krein, H. Langer, “Über die $Q$-Funktion eines $\pi$-hermiteschen Operators im Raume $\Pi_{\kappa}$”, Acta Sci. Math., 34 (1973), 191–230 | MR | Zbl
[17] A. Luger, “A factorization of regular generalized Nevanlinna functions”, Integral Equations Operator Theory, 43:3 (2002), 326–345 | DOI | MR | Zbl
[18] B. Sz.-Nagy, A. Korányi, “Operatortheoretische Behandlung und Verallgemeinerung eines Problemkreises in der komplexen Funktionentheorie”, Acta Math., 100:3–4 (1958), 171–202 | DOI | MR
[19] Yu. L. Shmulyan, “Ob operatornykh $R$-funktsiyakh”, Sib. matem. zh., XII (1971), 442–451