The Inverse Problem for Krein Orthogonal Matrix Functions
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 2, pp. 44-57.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the mid-fifties, in a seminal paper, M. G. Krein introduced continuous analogs of Szegő orthogonal polynomials on the unit circle and established their main properties. In this paper, we generalize these results and subsequent results that he obtained jointly with Langer to the case of matrix-valued functions. Our main theorems are much more involved than their scalar counterparts. They contain new conditions based on Jordan chains and root functions. The proofs require new techniques based on recent results in the theory of continuous analogs of resultant and Bezout matrices and solutions of certain equations in entire matrix functions.
Keywords: Krein orthogonal function, continuous analog of orthogonal polynomials, entire matrix function equation, root function, inverse problem.
Mots-clés : Jordan chain
@article{FAA_2007_41_2_a3,
     author = {I. Ts. Gokhberg and M. A. Kaashoek and L. E. Lerer},
     title = {The {Inverse} {Problem} for {Krein} {Orthogonal} {Matrix} {Functions}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {44--57},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a3/}
}
TY  - JOUR
AU  - I. Ts. Gokhberg
AU  - M. A. Kaashoek
AU  - L. E. Lerer
TI  - The Inverse Problem for Krein Orthogonal Matrix Functions
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 44
EP  - 57
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a3/
LA  - ru
ID  - FAA_2007_41_2_a3
ER  - 
%0 Journal Article
%A I. Ts. Gokhberg
%A M. A. Kaashoek
%A L. E. Lerer
%T The Inverse Problem for Krein Orthogonal Matrix Functions
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 44-57
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a3/
%G ru
%F FAA_2007_41_2_a3
I. Ts. Gokhberg; M. A. Kaashoek; L. E. Lerer. The Inverse Problem for Krein Orthogonal Matrix Functions. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 2, pp. 44-57. http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a3/

[1] A. Atzmon, “$n$-orthogonal operator polynomials”, Orthogonal Matrix-Valued Polynomials and Applications (Tel Aviv, 1987–88), 34, ed. I. Gohberg, Birkhäuser, Basel, 1988, 47–63 | DOI | MR

[2] D. Alpay, I. Gohberg, “On orthogonal matrix polynomials”, Orthogonal Matrix-Valued Polynomials and Applications (Tel Aviv, 1987–88), 34, ed. I. Gohberg, Birkhäuser, Basel, 1988, 25–46 | DOI | MR

[3] S. A. Denisov, “To the spectral theory of Krein systems”, Integral Equations Operator Theory, 42:2 (2002), 166–173 | DOI | MR | Zbl

[4] H. Dym, “On reproducing kernels and the continuous covariance extension problem”, Analysis and Partial Differential Equations, Lecture Notes in Pure and Appl. Math., 122, ed. C. Sadosky, Marcel Dekker, New York, 1990, 427–482 | MR

[5] H. Dym, “On the zeros of some continuous analogues of matrix polynomials and a related extension problem with negative squares”, Comm. Pure Appl. Math., 47:2 (1994), 207–256 | DOI | MR | Zbl

[6] R. L. Ellis, I. Gohberg, Orthogonal Systems and Convolution Operators, Oper. Theory Adv. Appl., 140, Birkhäuser, Basel, 2003 | MR | Zbl

[7] R. L. Ellis, I. Gohberg, D. C. Lay, “Distribution of zeros of matrix-valued continuous analogues of orthogonal polynomials”, Continuous and Discrete Fourier Transforms, Extension Problems and Wiener–Hopf Equations, Oper. Theory Adv. Appl., 58, ed. I. Gohberg, Birkhäuser, Basel, 1992, 26–70 | MR | Zbl

[8] I. Gohberg, S. Goldberg, M. A. Kaashoek, Classes of Linear Operators, vol. II, Oper. Theory Adv. Appl., 63, Birkhäuser, Basel, 1993 | MR | Zbl

[9] I. Gohberg, I. Haimovici, M. A. Kaashoek, L. Lerer, “The Bezout integral operator: main property and underlying abstract scheme”, The State Space Method. Generalizations and Applications, Oper. Theory Adv. Appl., 161, Birkhäuser, Basel, 2005, 225–270 | MR

[10] I. Ts. Gokhberg, G. Khainig, “O matrichnykh integralnykh operatorakh na konechnom intervale s yadrami, zavisyaschimi ot raznosti argumentov”, Rev. Roumaine Math. Pures Appl., 20:1 (1975), 55–73 | Zbl

[11] I. Gohberg, M. A. Kaashoek, L. Lerer, “The continuous analogue of the resultant and related convolution operators”, The Extended Field of Operator Theory, Oper. Theory Adv. Appl., 171, ed. M. A. Dritschel, Birkhäuser, Basel, 2006, 107–127 | MR | Zbl

[12] I. Gohberg, M. A. Kaashoek, L. Lerer, On a class of entire matrix function equations, volume dedicated to P. Fuhrmann, Linear Algebra Appl., 2007 (to appear) | MR

[13] I. Gohberg, M. A. Kaashoek, F. van Schagen, Partially Specified Matrices and operators: Classification, Completion, Applications, Oper. Theory Adv. Appl., 79, Birkhäuser, Basel, 1995 | MR | Zbl

[14] I. Gohberg, M. A. Kaashoek, F. van Schagen, “On inversion of convolution integral operators on a finite interval”, Operator Theoretical Methods and Applications to Mathematical Physics. The Erhard Meister Memorial Volume, Oper. Theory Adv. Appl., 147, Birkhäuser, Basel, 2004, 277–285 | MR | Zbl

[15] I. Gohberg, L. Lerer, “Matrix generalizations of M. G. Krein theorems on matrix polynomials,”, Orthogonal Matrix-Valued Polynomials and Applications, Oper. Theory Adv. Appl., 34, ed. I. Gohberg, Birkhäuser, Basel, 1988, 137–202 | MR

[16] by T. Kailath “A view of three decades of linear filtering theory”, IEEE Trans. Information Theory, IT-20 (1974), 145–181 | MR

[17] T. Kailath, A. Viera, M. Morf, “Inverses of Toeplitz operators, innovations and orthogonal polynomials”, SIAM Review, 20 (1978), 106–116 | DOI | MR

[18] M. G. Krein, “Kontinualnye analogi predlozhenii o mnogochlenakh, ortogonalnykh na edinichnoi okruzhnosti”, Dokl. AN SSCR, 105:4 (1955), 637–640 | MR | Zbl

[19] M. G. Krein, “K teorii akselerant i $S$-matrits kanonicheskikh differentsialnykh sistem”, Dokl. AN SSCR, 111 (1956), 1167–1170 | MR | Zbl

[20] M. G. Krein, “O raspolozhenii kornei mnogochlenov, ortogonalnykh na edinichnoi okruzhnosti po znakoperemennomu vesu”, Teoriya funktsii, funkts. analiz i prilozhen., 2 (1966), 131–137 | MR | Zbl

[21] M. G. Krein, G. Langer, “Kontinualnye analogi ortogonalnykh mnogochlenov na edinichnoi okruzhnosti po indefinitnomu vesu i svyazannye s nimi problemy prodolzheniya”, Dokl. AN SSCR, 258 (1981), 537–541 | MR

[22] M. G. Kreǐn, H. Langer, “On some continuation problems which are closely related to the theory of operators in spaces $\Pi_\kappa$. IV: Continuous analogues of orthogonal polynomials on the unit circle with respect to an indefinite weight and related continuation problems for some classes of functions”, J. Operator Theory, 13:2 (1985), 299–417 | MR | Zbl

[23] M. G. Krein, F. E. Melik-Adamyan, “Matrichno-kontinualnye analogi zadach Shura i Karateodori–Tëplitsa”, Izv. AN Arm. SSR, 21:2 (1986), 107–141 | MR | Zbl

[24] A. Lindquist, “On Fredholm integral equations, Toeplitz equations and Kalman–Bucy filtering”, Appl. Math. Optim., 1 (1975), 355–373 | DOI | MR | Zbl

[25] L. A. Sakhnovich, “On Krein's differential system and its generalization”, Integral Equations Operator Theory, 55:4 (2006), 561–572 | DOI | MR | Zbl