Voir la notice de l'article provenant de la source Math-Net.Ru
@article{FAA_2007_41_2_a1, author = {M. Sh. Birman and T. A. Suslina}, title = {Homogenization of the {Stationary} {Periodic} {Maxwell} {System} in the {Case} of {Constant} {Permeability}}, journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a}, pages = {3--23}, publisher = {mathdoc}, volume = {41}, number = {2}, year = {2007}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a1/} }
TY - JOUR AU - M. Sh. Birman AU - T. A. Suslina TI - Homogenization of the Stationary Periodic Maxwell System in the Case of Constant Permeability JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2007 SP - 3 EP - 23 VL - 41 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a1/ LA - ru ID - FAA_2007_41_2_a1 ER -
%0 Journal Article %A M. Sh. Birman %A T. A. Suslina %T Homogenization of the Stationary Periodic Maxwell System in the Case of Constant Permeability %J Funkcionalʹnyj analiz i ego priloženiâ %D 2007 %P 3-23 %V 41 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a1/ %G ru %F FAA_2007_41_2_a1
M. Sh. Birman; T. A. Suslina. Homogenization of the Stationary Periodic Maxwell System in the Case of Constant Permeability. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 2, pp. 3-23. http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a1/
[1] N. S. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl
[2] A. Bensoussan, J.-L. Lions, G. Papanicolau, Asymptotic analysis for periodic structures, North-Holland Publishing Co., Amsterdam–New York, 1978 | MR
[3] M. Sh. Birman, T. A. Suslina, “Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics”, Oper. Theory: Adv. Appl., 129, Birkhäuser, Basel, 2001, 71–107 | MR | Zbl
[4] M. Sh. Birman, T. A. Suslina, “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl
[5] M. Sh. Birman, T. A. Suslina, “Porogovye approksimatsii rezolventy faktorizovannogo samosopryazhennogo semeistva s uchetom korrektora”, Algebra i analiz, 17:5 (2005), 69–90 | MR
[6] M. Sh. Birman, T. A. Suslina, “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104 | MR
[7] M. Sh. Birman, T. A. Suslina, “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb{R}^d)$”, Algebra i analiz, 18:6 (2006), 1–130 | MR
[8] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Fizmatgiz, M., 1993 | MR | Zbl
[9] E. Sanches-Palensiya, Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR
[10] T. A. Suslina, “Ob usrednenii periodicheskoi sistemy Maksvella”, Funkts. analiz i ego pril., 38:3 (2004), 90–94 | DOI | MR | Zbl
[11] T. A. Suslina, “Usrednenie statsionarnoi periodicheskoi sistemy Maksvella”, Algebra i analiz, 16:5 (2004), 162–244 | MR