Homogenization of the Stationary Periodic Maxwell System in the Case of Constant Permeability
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 2, pp. 3-23.

Voir la notice de l'article provenant de la source Math-Net.Ru

The homogenization problem in the small period limit for the stationary periodic Maxwell system in $\mathbb{R}^3$ is considered. It is assumed that the permittivity $\eta^\varepsilon(\mathbf{x})=\eta(\varepsilon^{-1}\mathbf{x})}$, $\varepsilon>0$, is a rapidly oscillating positive matrix function and the permeability $\mu_0$ is a constant positive matrix. For all four physical fields (the electric and magnetic field intensities, the electric displacement field, and the magnetic flux density), we obtain uniform approximations in the $L_2(\mathbb{R}^3)$-norm with order-sharp remainder estimates.
Keywords: periodic Maxwell operator, homogenization, effective medium, corrector.
@article{FAA_2007_41_2_a1,
     author = {M. Sh. Birman and T. A. Suslina},
     title = {Homogenization of the {Stationary} {Periodic} {Maxwell} {System} in the {Case} of {Constant} {Permeability}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {3--23},
     publisher = {mathdoc},
     volume = {41},
     number = {2},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a1/}
}
TY  - JOUR
AU  - M. Sh. Birman
AU  - T. A. Suslina
TI  - Homogenization of the Stationary Periodic Maxwell System in the Case of Constant Permeability
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 3
EP  - 23
VL  - 41
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a1/
LA  - ru
ID  - FAA_2007_41_2_a1
ER  - 
%0 Journal Article
%A M. Sh. Birman
%A T. A. Suslina
%T Homogenization of the Stationary Periodic Maxwell System in the Case of Constant Permeability
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 3-23
%V 41
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a1/
%G ru
%F FAA_2007_41_2_a1
M. Sh. Birman; T. A. Suslina. Homogenization of the Stationary Periodic Maxwell System in the Case of Constant Permeability. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 2, pp. 3-23. http://geodesic.mathdoc.fr/item/FAA_2007_41_2_a1/

[1] N. S. Bakhvalov, G. P. Panasenko, Osrednenie protsessov v periodicheskikh sredakh, Nauka, M., 1984 | MR | Zbl

[2] A. Bensoussan, J.-L. Lions, G. Papanicolau, Asymptotic analysis for periodic structures, North-Holland Publishing Co., Amsterdam–New York, 1978 | MR

[3] M. Sh. Birman, T. A. Suslina, “Threshold effects near the lower edge of the spectrum for periodic differential operators of mathematical physics”, Oper. Theory: Adv. Appl., 129, Birkhäuser, Basel, 2001, 71–107 | MR | Zbl

[4] M. Sh. Birman, T. A. Suslina, “Periodicheskie differentsialnye operatory vtorogo poryadka. Porogovye svoistva i usredneniya”, Algebra i analiz, 15:5 (2003), 1–108 | MR | Zbl

[5] M. Sh. Birman, T. A. Suslina, “Porogovye approksimatsii rezolventy faktorizovannogo samosopryazhennogo semeistva s uchetom korrektora”, Algebra i analiz, 17:5 (2005), 69–90 | MR

[6] M. Sh. Birman, T. A. Suslina, “Usrednenie periodicheskikh ellipticheskikh differentsialnykh operatorov s uchetom korrektora”, Algebra i analiz, 17:6 (2005), 1–104 | MR

[7] M. Sh. Birman, T. A. Suslina, “Usrednenie periodicheskikh differentsialnykh operatorov s uchetom korrektora. Priblizhenie reshenii v klasse Soboleva $H^1(\mathbb{R}^d)$”, Algebra i analiz, 18:6 (2006), 1–130 | MR

[8] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik, Usrednenie differentsialnykh operatorov, Fizmatgiz, M., 1993 | MR | Zbl

[9] E. Sanches-Palensiya, Neodnorodnye sredy i teoriya kolebanii, Mir, M., 1984 | MR

[10] T. A. Suslina, “Ob usrednenii periodicheskoi sistemy Maksvella”, Funkts. analiz i ego pril., 38:3 (2004), 90–94 | DOI | MR | Zbl

[11] T. A. Suslina, “Usrednenie statsionarnoi periodicheskoi sistemy Maksvella”, Algebra i analiz, 16:5 (2004), 162–244 | MR