Banach Algebra Technique for Proving an Addition Formula for Spectral Multiplicities of Sets of Operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 1, pp. 93-95
Cet article a éte moissonné depuis la source Math-Net.Ru
We use a Banach algebra technique to compute the spectral multiplicity of some sets of commuting operators.
Keywords:
Banach algebra, representation, spectral multiplicity.
@article{FAA_2007_41_1_a6,
author = {M. T. Karaev},
title = {Banach {Algebra} {Technique} for {Proving} an {Addition} {Formula} for {Spectral} {Multiplicities} of {Sets} of {Operators}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {93--95},
year = {2007},
volume = {41},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a6/}
}
TY - JOUR AU - M. T. Karaev TI - Banach Algebra Technique for Proving an Addition Formula for Spectral Multiplicities of Sets of Operators JO - Funkcionalʹnyj analiz i ego priloženiâ PY - 2007 SP - 93 EP - 95 VL - 41 IS - 1 UR - http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a6/ LA - ru ID - FAA_2007_41_1_a6 ER -
M. T. Karaev. Banach Algebra Technique for Proving an Addition Formula for Spectral Multiplicities of Sets of Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 1, pp. 93-95. http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a6/
[1] A. A. Kirillov, Elementy teorii predstavlenii, Nauka, M., 1972 | MR
[2] N. Dunford, L. Schwartz, Linear operators, Part \rom{I:} General theory, Springer-Verlag, New York, 1958 | MR
[3] H. Radjavi, P. Rosenthal, Invariant subspaces, Springer-Verlag, Berlin–New York, 1973 | MR | Zbl
[4] N. K. Nikolskii, “Invariantnye podprostranstva v teorii operatorov i teorii funktsii”, Itogi nauki i tekhniki. Matematicheskii analiz, 12, 1974, 199–412
[5] N. K. Nikolskii, Lektsii ob operatore sdviga, Nauka, M., 1980 | MR
[6] B. Szökefalvi-Nagy, C. Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam, 1970 | MR
[7] V. Ya. Lin, Funkts. analiz i ego pril., 7:2 (1973), 43–51 | MR | Zbl