Banach Algebra Technique for Proving an Addition Formula for Spectral Multiplicities of Sets of Operators
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 1, pp. 93-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

We use a Banach algebra technique to compute the spectral multiplicity of some sets of commuting operators.
Keywords: Banach algebra, representation, spectral multiplicity.
@article{FAA_2007_41_1_a6,
     author = {M. T. Karaev},
     title = {Banach {Algebra} {Technique} for {Proving} an {Addition} {Formula} for {Spectral} {Multiplicities} of {Sets} of {Operators}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {93--95},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a6/}
}
TY  - JOUR
AU  - M. T. Karaev
TI  - Banach Algebra Technique for Proving an Addition Formula for Spectral Multiplicities of Sets of Operators
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 93
EP  - 95
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a6/
LA  - ru
ID  - FAA_2007_41_1_a6
ER  - 
%0 Journal Article
%A M. T. Karaev
%T Banach Algebra Technique for Proving an Addition Formula for Spectral Multiplicities of Sets of Operators
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 93-95
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a6/
%G ru
%F FAA_2007_41_1_a6
M. T. Karaev. Banach Algebra Technique for Proving an Addition Formula for Spectral Multiplicities of Sets of Operators. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 1, pp. 93-95. http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a6/

[1] A. A. Kirillov, Elementy teorii predstavlenii, Nauka, M., 1972 | MR

[2] N. Dunford, L. Schwartz, Linear operators, Part \rom{I:} General theory, Springer-Verlag, New York, 1958 | MR

[3] H. Radjavi, P. Rosenthal, Invariant subspaces, Springer-Verlag, Berlin–New York, 1973 | MR | Zbl

[4] N. K. Nikolskii, “Invariantnye podprostranstva v teorii operatorov i teorii funktsii”, Itogi nauki i tekhniki. Matematicheskii analiz, 12, 1974, 199–412

[5] N. K. Nikolskii, Lektsii ob operatore sdviga, Nauka, M., 1980 | MR

[6] B. Szökefalvi-Nagy, C. Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland, Amsterdam, 1970 | MR

[7] V. Ya. Lin, Funkts. analiz i ego pril., 7:2 (1973), 43–51 | MR | Zbl