A Hyperbolicity Criterion for Periodic Solutions of Functional-Differential Equations: The Case of Rational Periods
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 1, pp. 90-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

We establish necessary and sufficient conditions for hyperbolicity of periodic solutions of nonlinear functional-differential equations.
Keywords: nonlinear functional-differential equation, hyperbolicity of a periodic solution
Mots-clés : Floquet multiplier.
@article{FAA_2007_41_1_a5,
     author = {N. B. Zhuravlev},
     title = {A {Hyperbolicity} {Criterion} for {Periodic} {Solutions} of {Functional-Differential} {Equations:} {The} {Case} of {Rational} {Periods}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {90--92},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a5/}
}
TY  - JOUR
AU  - N. B. Zhuravlev
TI  - A Hyperbolicity Criterion for Periodic Solutions of Functional-Differential Equations: The Case of Rational Periods
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 90
EP  - 92
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a5/
LA  - ru
ID  - FAA_2007_41_1_a5
ER  - 
%0 Journal Article
%A N. B. Zhuravlev
%T A Hyperbolicity Criterion for Periodic Solutions of Functional-Differential Equations: The Case of Rational Periods
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 90-92
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a5/
%G ru
%F FAA_2007_41_1_a5
N. B. Zhuravlev. A Hyperbolicity Criterion for Periodic Solutions of Functional-Differential Equations: The Case of Rational Periods. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 1, pp. 90-92. http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a5/

[1] Kh.-O. Valter, A. L. Skubachevskii, Trudy MMO, 64 (2003), 3–53 | MR

[2] S. N. Chow, O. Diekmann, J. Mallet-Paret, Japan J. Applied Mathematics, 2 (1985), 433–469 | DOI | MR | Zbl

[3] S. N. Chow, H.-O. Walther, Trans. Amer. Math. Soc., 307:1 (1988), 127–142 | DOI | MR | Zbl

[4] O. Diekmann, S. van Gils, S. M. Verduyn Lunel, H. O. Walther, Delay Equations: Functional-, Complex-, and Nonlinear Analysis, Springer, New York, 1995 | MR | Zbl

[5] J. K. Hale, S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer-Verlag, New York, 1993 | MR

[6] J. Mallet-Paret, G. Sell, J. Differential Equations, 125 (1996), 385–440 | DOI | MR | Zbl

[7] A. L. Skubachevskii, H.-O. Walther, J. of Dynamics and Differential Equations, 18:2 (2006), 257–355 | DOI | MR | Zbl