Eigenfunction Expansions Associated with One-Dimensional Periodic Differential Operators of Order~$2n$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 1, pp. 66-89.

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an explicit formula for spectral expansions in $L^2(\mathbb{R})$ generated by self-adjoint differential operators $$ (-1)^n\frac{d^{2n}}{dx^{2n}}+\sum_{j=0}^{n-1}\frac{d^{j}}{dx^{j}}\, p_j(x)\frac{d^{j}}{dx^{j}}\,,\qquad p_j(x+\pi)=p_j(x),\quad x\in\mathbb{R}. $$
Keywords: differential operator, eigenfunction expansion
Mots-clés : spectral matrix.
@article{FAA_2007_41_1_a4,
     author = {V. A. Tkachenko},
     title = {Eigenfunction {Expansions} {Associated} with {One-Dimensional} {Periodic} {Differential} {Operators} of {Order~}$2n$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {66--89},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a4/}
}
TY  - JOUR
AU  - V. A. Tkachenko
TI  - Eigenfunction Expansions Associated with One-Dimensional Periodic Differential Operators of Order~$2n$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 66
EP  - 89
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a4/
LA  - ru
ID  - FAA_2007_41_1_a4
ER  - 
%0 Journal Article
%A V. A. Tkachenko
%T Eigenfunction Expansions Associated with One-Dimensional Periodic Differential Operators of Order~$2n$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 66-89
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a4/
%G ru
%F FAA_2007_41_1_a4
V. A. Tkachenko. Eigenfunction Expansions Associated with One-Dimensional Periodic Differential Operators of Order~$2n$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 1, pp. 66-89. http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a4/

[1] E. C. Titchmarsh, “Eigenfunction problems with periodic potentials”, Proc. Roy. Soc., Ser. A, 203 (1950), 501–514 | DOI | MR | Zbl

[2] E. C. Titchmarsh, Eigenfunction Expansions associated with Second-Order Differential Equations, Part II, Oxford University Press, Oxford, 1958 | MR | Zbl

[3] N. Danford, Dzh. T. Shvarts, Lineinye operatory. {T. 2.} Spektralnaya teoriya, Mir, M., 1966

[4] I. M. Gelfand, “Razlozhenie po sobstvennym funktsiyam uravnenii s periodicheskimi koeffitsientami”, DAN SSSR, 73:6 (1950), 1117–1120 | MR

[5] V. I. Khrabustovskii, “Razlozhenie po sobstvennym funktsiyam periodicheskikh sistem s vesom”, Dokl. AN USSR, ser. A, 1984, no. 5, 26–29 | MR

[6] M. A. Naimark, Lineinye differentsialnye operatory, Nauka, M., 1969 | MR

[7] Van der Varden, Algebra, Nauka, M., 1979 | MR

[8] A. I. Markushevich, Teoriya analiticheskikh funktsii, 1, 2, Nauka, M., 1967 | MR

[9] Z. L. Leibenzon, “Obratnaya zadacha spektralnogo analiza obyknovennykh differentsialnykh uravnenii”, Trudy MMO, 15, 1966, 78–163 | MR | Zbl

[10] V. Tkachenko, “Spectrum of 1d selfadjoint periodic differential operator of order $4$”, Contemp. Math., 327 (2003), 331–340, Amer. Math. Soc. | DOI | MR

[11] R. Kurant, A. Gurvits, Teoriya funktsii, Nauka, M., 1968 | MR

[12] N. N. Meiman, “The theory of one-dimensional Schrödinger operators with a periodic potential”, J. Math. Phys., 18 (1977), 834–848 | DOI | MR

[13] L. A. Pastur, V. A. Tkachenko, “Spektralnaya teoriya odnomernykh operatorov Shrëdingera s predelno-periodicheskim potentsialom”, DAN SSSR, 279:3 (1984), 1050–1053 | MR | Zbl

[14] M. G. Krein, “The main statements of the theory of stability $\lambda$-bands of canonical systems of linear differential equations with periodic coefficients”, Collection dedicated to the memory of A. A. Andronov, USSR Academy of Science, 1955, 413–498 | MR

[15] V. A. Yakubovich, V. M. Starzhinskii, Lineinye differentsialnye uravneniya s periodicheskimi koeffitsientami, Nauka, M., 1972 | MR

[16] V. A. Marchenko, “Nekotorye voprosy teorii odnomernykh lineinykh differentsialnykh operatorov vtorogo poryadka. I”, Trudy MMO, 1, 1952, 327–420

[17] F. S. Rofe-Beketov, “Spektralnaya matritsa i obratnaya zadacha Shturma–Liuvillya na osi $(-\infty,+\infty)$”, Teoriya funktsii, funkts. analiz i prilozhen., 4 (1967), 189–197 | MR | Zbl