Eigenfunction Expansions Associated with One-Dimensional Periodic Differential Operators of Order~$2n$
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 1, pp. 66-89

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove an explicit formula for spectral expansions in $L^2(\mathbb{R})$ generated by self-adjoint differential operators $$ (-1)^n\frac{d^{2n}}{dx^{2n}}+\sum_{j=0}^{n-1}\frac{d^{j}}{dx^{j}}\, p_j(x)\frac{d^{j}}{dx^{j}}\,,\qquad p_j(x+\pi)=p_j(x),\quad x\in\mathbb{R}. $$
Keywords: differential operator, eigenfunction expansion
Mots-clés : spectral matrix.
@article{FAA_2007_41_1_a4,
     author = {V. A. Tkachenko},
     title = {Eigenfunction {Expansions} {Associated} with {One-Dimensional} {Periodic} {Differential} {Operators} of {Order~}$2n$},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {66--89},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a4/}
}
TY  - JOUR
AU  - V. A. Tkachenko
TI  - Eigenfunction Expansions Associated with One-Dimensional Periodic Differential Operators of Order~$2n$
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 66
EP  - 89
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a4/
LA  - ru
ID  - FAA_2007_41_1_a4
ER  - 
%0 Journal Article
%A V. A. Tkachenko
%T Eigenfunction Expansions Associated with One-Dimensional Periodic Differential Operators of Order~$2n$
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 66-89
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a4/
%G ru
%F FAA_2007_41_1_a4
V. A. Tkachenko. Eigenfunction Expansions Associated with One-Dimensional Periodic Differential Operators of Order~$2n$. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 1, pp. 66-89. http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a4/