On Rational Isomorphisms of Lie Algebras
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 1, pp. 52-65.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathfrak{n}$ be a finite-dimensional noncommutative nilpotent Lie algebra for which the ring of polynomial invariants of the coadjoint representation is generated by linear functions. Let $\mathfrak{g}$ be an arbitrary Lie algebra. We consider semidirect sums $\mathfrak{n}{\kern1pt\dashv_{\rho}\kern1pt}\mathfrak{g}$ with respect to an arbitrary representation $\rho\colon \mathfrak{g}\to\operatorname{der}\mathfrak{n}$ such that the center $z\mathfrak{n}$ of $\mathfrak{n}$ has a $\rho$-invariant complement. We establish that some localization $\widetilde{P}(\mathfrak{n}{\kern1pt\dashv_{\rho}\kern1pt}\mathfrak{g})$ of the Poisson algebra of polynomials in elements of the Lie algebra $\mathfrak{n}{\kern1pt\dashv_{\rho}\kern1pt}\mathfrak{g}$ is isomorphic to the tensor product of the standard Poisson algebra of a nonzero symplectic space by a localization of the Poisson algebra of the Lie subalgebra $(z\mathfrak{n})\dashv\mathfrak{g}$. If $[\mathfrak{n},\mathfrak{n}]\subseteq z\mathfrak{n}$, then a similar tensor product decomposition is established for the localized universal enveloping algebra of the Lie algebra $\mathfrak{n}{\kern1pt\dashv_{\rho}\kern1pt}\mathfrak{g}$. For the case in which $\mathfrak{n}$ is a Heisenberg algebra, we obtain explicit formulas for the embeddings of $\mathfrak{g}_P$ in $\widetilde{P}(\mathfrak{n}{\kern1pt\dashv_{\rho}\kern1pt}\mathfrak{g})$. These formulas have applications, some related to integrability in mechanics and others to the Gelfand–Kirillov conjecture.
Keywords: Lie algebra, representation, Heisenberg algebra, universal enveloping algebra.
Mots-clés : Poisson algebra
@article{FAA_2007_41_1_a3,
     author = {S. T. Sadetov},
     title = {On {Rational} {Isomorphisms} of {Lie} {Algebras}},
     journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
     pages = {52--65},
     publisher = {mathdoc},
     volume = {41},
     number = {1},
     year = {2007},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a3/}
}
TY  - JOUR
AU  - S. T. Sadetov
TI  - On Rational Isomorphisms of Lie Algebras
JO  - Funkcionalʹnyj analiz i ego priloženiâ
PY  - 2007
SP  - 52
EP  - 65
VL  - 41
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a3/
LA  - ru
ID  - FAA_2007_41_1_a3
ER  - 
%0 Journal Article
%A S. T. Sadetov
%T On Rational Isomorphisms of Lie Algebras
%J Funkcionalʹnyj analiz i ego priloženiâ
%D 2007
%P 52-65
%V 41
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a3/
%G ru
%F FAA_2007_41_1_a3
S. T. Sadetov. On Rational Isomorphisms of Lie Algebras. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 1, pp. 52-65. http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a3/

[1] E. B. Vinberg, “Kommutativnye odnorodnye prostranstva i koizotropnye simplekticheskie deistviya”, UMN, 56:1 (2001), 3–62 | DOI | MR | Zbl

[2] Zh. Diksme, Universalnye obertyvayuschie algebry, Mir, M., 1978 | MR

[3] I. M. Gelfand, A. A. Kirillov, “Sur les corps liés aux algèbres enveloppantes des algèbres de Lie”, Publ. Math., Inst. Hautes Etud. Sci., 31 (1966), 506–523 | MR | Zbl

[4] W. Borho, P. Gabriel, R. Rentschler, Primideale in Einhüllenden auflösbarer Lie Algebren, Lecture Notes in Math., 357, Springer-Verlag, 1973 | MR | Zbl

[5] A. Joseph, “Proof of the Gelfand–Kirillov conjecture for solvable Lie algebras”, Proc. Amer. Math. Soc., 45:1 (1974), 1–10 | DOI | MR | Zbl

[6] A. Joseph, “A generalization of the Gelfand–Kirillov conjecture”, American Journal of Mathematics, 99:6 (1977), 1151–1165 | DOI | MR | Zbl

[7] J. C. McConnell, “Representations of solvable Lie algebras and the Gelfand–Kirillov conjecture”, Proc. London Math. Soc., 29:3 (1974), 453–484 | DOI | MR | Zbl

[8] Nghiêm-Xuân Hai, “Réduction de produits semi-directs et conjecture de Gelfand et Kirillov”, Bull. Soc. Math. France, 107:3 (1979), 241–267 | MR | Zbl

[9] J. Alev, A. Ooms, M. Van den Bergh, “A class of counterexamples to the Gelfand–Kirillov conjecture”, Trans. Amer. Math. Soc., 348:5 (1996), 1709–1716 | DOI | MR | Zbl

[10] J. Alev, A. Ooms, M. Van den Bergh, “The Gelfand–Kirillov conjecture for Lie algebras of dimension at most eight”, J. Algebra, 227:2 (2000), 549–581 | DOI | MR | Zbl

[11] I. M. Gelfand, A. A. Kirillov, “Struktura tela Li, svyazannogo s poluprostoi rasschepimoi algebroi Li”, Funkts. analiz i ego pril., 3:1 (1969), 7–26 | MR

[12] S. T. Sadetov, “O rasshireniyakh algebr Li s pomoschyu algebry Geizenberga”, Matem. zametki, 78:5 (2005), 745–747 | DOI | MR | Zbl

[13] S. T. Sadetov, “Rasshirenie obschikh integriruemykh sluchaev uravnenii Eilera–Puassona s postoyannoi v soputstvuyuschikh osyakh siloi tyagi”, Doklady RAN, 386:4 (2002), 461–463 | MR | Zbl

[14] E. B. Vinberg, A. L. Onischik, Seminar po gruppam Li i algebraicheskim gruppam, Nauka, M., 1988 | MR

[15] V. I. Arnold, A. V. Givental, “Simplekticheskaya geometriya”, Itogi nauki i tekhn. Sovrem. probl. matematiki. Fundam. napravleniya, 4, VINITI, M., 1985, 5–139