On the Spectrum of a Vector Schr\"odinger Operator
Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 1, pp. 39-51
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the asymptotics of the spectrum of a Sturm–Liouville operator acting on a space of vector functions and show that this asymptotics is affected by “rotation” of eigenvectors of the potential. A similar result is obtained for a vector Schrödinger operator.
Keywords:
Schrödinger operator, self-adjointness, discrete spectrum, counting function.
@article{FAA_2007_41_1_a2,
author = {R. S. Ismagilov and A. G. Kostyuchenko},
title = {On the {Spectrum} of a {Vector} {Schr\"odinger} {Operator}},
journal = {Funkcionalʹnyj analiz i ego prilo\v{z}eni\^a},
pages = {39--51},
publisher = {mathdoc},
volume = {41},
number = {1},
year = {2007},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a2/}
}
R. S. Ismagilov; A. G. Kostyuchenko. On the Spectrum of a Vector Schr\"odinger Operator. Funkcionalʹnyj analiz i ego priloženiâ, Tome 41 (2007) no. 1, pp. 39-51. http://geodesic.mathdoc.fr/item/FAA_2007_41_1_a2/